進階搜尋


下載電子全文  
系統識別號 U0026-2901201920260200
論文名稱(中文) 廣義GHZ-like States之量子糾纏互換以及其應用:半量子私密比較與半量子多方私密求和
論文名稱(英文) Entanglement Swapping of Generalized GHZ-like States and its Applications: Semi-quantum Private Comparison and Multi-party Semi-quantum Summation
校院名稱 成功大學
系所名稱(中) 資訊工程學系
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 107
學期 1
出版年 108
研究生(中文) 詹博山
研究生(英文) Po-Shan Chan
學號 P76064041
學位類別 碩士
語文別 英文
論文頁數 55頁
口試委員 口試委員-簡宏宇
口試委員-李南逸
口試委員-王旭正
指導教授-黃宗立
中文關鍵字 量子密碼學  糾纏互換  半量子私密比較協議  半量子求合協議  第三方  近乎不誠實 
英文關鍵字 Quantum Cryptography  Entanglement Swapping  Semi-quantum private comparison  Semi-quantum summation  Third Party  Almost-Dishonest 
學科別分類
中文摘要 本論文試圖利用新發現之量子互換特性,在「半量子」環境中設計安全的協定。本論文首先推導出廣義GHZ-like States之間的糾纏互換關係。利用這些關係,提出了一個含第三方的半量子私密比較協議,在近乎不誠實的第三方幫助下,使兩個只具備基本量子能力的「古典」參與者可以安全的比較秘密。此外,將此協定衍生並提出了一個多方半量子私密求和協議,在近乎不誠實的第三方幫助下,使三個或更多的「古典」參與者可以安全的進行私密求和。此外,本文提出的協定可以簡單的調整成為不同的量子密碼學協定,如半量子金鑰分配協議、半量子多方私密分享協議與可控制式半量子直接通訊協議。
英文摘要 This thesis develops some new properties of entanglement swapping of generalized Greenberger–Horne–Zeilinger-like (GHZ-like) states to design secure protocols in the “semi-quantum” environment. We first derive the entanglement swapping correlations of generalized Greenberger–Horne–Zeilinger-like states. By utilizing the properties of entanglement swapping, we propose a semi-quantum private comparison protocol (SQPC) that allows two classical participants to compare the equality of their secret information securely with the help of an almost-dishonest third party (TP). We then extend the SQPC to propose the first multi-party semi-quantum summation protocol (MSQS), which allows three or more classical participants to compute the summation of their secret information securely with the help of an almost-dishonest TP. In addition, we show that the proposed protocols can be easily converted to other quantum cryptography protocols, such as mediated semi-quantum key distribution, multi-party semi-quantum secret sharing, and controlled deterministic secure semi-quantum communication.
論文目次 中文摘要 I
Abstract II
誌 謝 IV
Content V
List of Tables VII
List of Figures VIII
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Motivation and Contribution 2
1.3 Thesis Structure 3
Chapter 2 Preliminaries 5
2.1 Properties of single photons 5
2.2 Notations 8
2.3 Properties of Bell states 9
2.4 Properties of GHZ-like states 10
2.5 Properties of generalized GHZ-like states 12
2.6 Properties of entanglement swapping 12
2.6.1 Definitions of entanglement swapping 13
2.6.2 Properties of entanglement swapping between two GHZ states 15
2.6.3 Properties of entanglement swapping between two generalized GHZ-like states 18
2.6.4 Properties for entanglement swapping between a GHZ state and a generalized GHZ-like state 22
Chapter 3 Semi-quantum Private Comparison 24
3.1 Proposed SQPC Protocol 24
3.2 Efficiency 30
Chapter 4 Multi-party Semi-quantum Summation 31
4.1 Proposed MSQS protocol 31
4.2 Efficiency 38
Chapter 5 Security analyses 39
5.1 Measure-and-resend Attack 39
5.2 Fake State Attack 41
5.3 Collective Attack 43
5.4 Fake Result Attack 46
Chapter 6 Extending protocols 47
Chapter 7 Conclusions 49
Bibliography 50
參考文獻 [1] Yang, Yu-Guang, and Qiao-Yan Wen. "An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement." Journal of Physics A: Mathematical and Theoretical 42.5 (2009): 055305.
[2] Jia, Heng-Yue, et al. "Quantum protocol for millionaire problem." Optics communications 284.1 (2011): 545-549.
[3] Chen, Xiu-Bo, et al. "An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement." Optics communications 283.7 (2010): 1561-1565.
[4] Lin, Jason, Hsin-Yi Tseng, and Tzonelih Hwang. "Intercept–resend attacks on Chen et al.'s quantum private comparison protocol and the improvements." Optics Communications 284.9 (2011): 2412-2414.
[5] Zhang, Wei-Wei, Dan Li, and Yan-Bing Li. "Quantum private comparison protocol with W States." International Journal of Theoretical Physics 53.5 (2014): 1723-1729.
[6] Chang, Yao-Jen, Chia-Wei Tsai, and Tzonelih Hwang. "Multi-user private comparison protocol using GHZ class states." Quantum information processing 12.2 (2013): 1077-1088.
[7] Xu, Ling, and Zhiwen Zhao. "Quantum private comparison protocol based on the entanglement swapping between χ+ state and W-Class state." Quantum Information Processing 16.12 (2017): 302.
[8] Luo, Qing-bin, et al. "Multi-party quantum private comparison protocol based on d-dimensional entangled states." Quantum information processing 13.10 (2014): 2343-2352.
[9] Liu, Wen, Yong-Bin Wang, and Xiao-Mei Wang. "Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping." International Journal of Theoretical Physics 53.4 (2014): 1085-1091.
[10] Zhang, Wei-Wei, and Ke-Jia Zhang. "Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party." Quantum information processing 12.5 (2013): 1981-1990.
[11] Tseng, Hsin-Yi, Jason Lin, and Tzonelih Hwang. "New quantum private comparison protocol using EPR pairs." Quantum Information Processing 11.2 (2012): 373-384.
[12] Wang, Cong, Gang Xu, and Yi-Xian Yang. "Cryptanalysis and improvements for the quantum private comparison protocol using EPR pairs." International Journal of Quantum Information 11.04 (2013): 1350039.
[13] Wang, Qing-Le, Hong-Xiang Sun, and Wei Huang. "Multi-party quantum private comparison protocol with n-level entangled states." Quantum information processing 13.11 (2014): 2375-2389.
[14] Huang, Sheng-Liang, Tzonelih Hwang, and Prosanta Gope. "Multi-party quantum private comparison protocol with an almost-dishonest third party using GHZ states." International Journal of Theoretical Physics 55.6 (2016): 2969-2976.
[15] Hung, Shih-Min, et al. "Multiparty quantum private comparison with almost dishonest third parties for strangers." Quantum Information Processing 16.2 (2017): 36.
[16] Ye, Tian-Yu, and Chong-Qiang Ye. "Measure-Resend Semi-Quantum Private Comparison Without Entanglement." International Journal of Theoretical Physics 57.12 (2018): 3819-3834.
[17] Yan-Feng, Lang. "Semi-Quantum Private Comparison Using Single Photons." International Journal of Theoretical Physics 57.10 (2018): 3048-3055.
[18] Du Jian-Zhong, Chen Xiu-Bo, Wen Qiao-Yan et al. “Secure multiparty quantum summation.” Acta Phys. Sin., 2007, 56(11): 6214-6219.
[19] Chen, Xiu-Bo, et al. "An efficient protocol for the secure multi-party quantum summation." International Journal of Theoretical Physics 49.11 (2010): 2793-2804.
[20] Shi, Run-hua, et al. "Secure multiparty quantum computation for summation and multiplication." Scientific reports 6 (2016): 19655.
[21] Zhang, Cai, et al. "High-capacity quantum summation with single photons in both polarization and spatial-mode degrees of freedom." International Journal of Theoretical Physics 53.3 (2014): 933-941.
[22] Liu, Wen, Yong-Bin Wang, and Wen-Qin Fan. "An novel protocol for the quantum secure multi-party summation based on two-particle bell states." International Journal of Theoretical Physics 56.9 (2017): 2783-2791.
[23] Zhang, Cai, et al. "Multi-party quantum summation without a trusted third party based on single particles." International Journal of Quantum Information 15.02 (2017): 1750010.
[24] Tang, Xin, et al. "Secure Multiparty Quantum Summation Based on d-Level Single Particles." International Conference on Cloud Computing and Security. Springer, Cham, 2018.
[25] Yang, Hui-Yi, and Tian-Yu Ye. "Secure multi-party quantum summation based on quantum Fourier transform." Quantum Information Processing 17.6 (2018): 129.
[26] Julsgaard, Brian, et al. "Experimental demonstration of quantum memory for light." Nature 432.7016 (2004): 482.
[27] Yao, Xing-Can, et al. "Observation of eight-photon entanglement." Nature photonics 6.4 (2012): 225-228.
[28] Nielsen, Michael A., and Isaac Chuang. "Quantum computation and quantum information." (2002): 558-559.
[29] Boyer, Michel, Dan Kenigsberg, and Tal Mor. "Quantum key distribution with classical Bob." Quantum, Nano, and Micro Technologies, 2007. ICQNM'07. First International Conference on. IEEE, 2007.
[30] Boyer, Michel, et al. "Semiquantum key distribution." Physical Review A 79.3 (2009): 032341.
[31] Li, Qin, W. H. Chan, and Dong-Yang Long. "Semiquantum secret sharing using entangled states." Physical Review A 82.2 (2010): 022303.
[32] Zou, XiangFu, and DaoWen Qiu. "Three-step semiquantum secure direct communication protocol." Science China Physics, Mechanics & Astronomy 57.9 (2014): 1696-1702.
[33] Zou, Xiangfu, et al. "Semiquantum-key distribution using less than four quantum states." Physical Review A 79.5 (2009): 052312.
[34] Yu, Kun-Fei, et al. "Authenticated semi-quantum key distribution protocol using Bell states." Quantum Information Processing 13.6 (2014): 1457-1465.
[35] Yu, Kun-Fei, et al. "Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing." Quantum Information Processing 16.8 (2017): 194.
[36] Liu, Zhi‐Rou, and Tzonelih Hwang. "Mediated Semi‐Quantum Key Distribution Without Invoking Quantum Measurement." Annalen der Physik 530.4 (2018): 1700206.
[37] Lu, Hua, and Qing-Yu Cai. "Quantum key distribution with classical Alice." International Journal of Quantum Information 6.06 (2008): 1195-1202.
[38] Xian-Zhou, Zhang, et al. "Quantum key distribution series network protocol with M-classical Bobs." Chinese Physics B 18.6 (2009): 2143.
[39] Tan, Yong-gang, Hua Lu, and Qing-yu Cai. "Comment on “Quantum key distribution with classical Bob”." Physical review letters 102.9 (2009): 098901.
[40] Jian, Wang, et al. "Semiquantum key distribution using entangled states." Chinese Physics Letters 28.10 (2011): 100301.
[41] Li, Lvzhou, Daowen Qiu, and Paulo Mateus. "Quantum secret sharing with classical Bobs." Journal of Physics A: Mathematical and Theoretical 46.4 (2013): 045304.
[42] Nie, Yi-you, Yuan-hua Li, and Zi-sheng Wang. "Semi-quantum information splitting using GHZ-type states." Quantum information processing 12.1 (2013): 437-448.
[43] Krawec, Walter O. "Mediated semiquantum key distribution." Physical Review A 91.3 (2015): 032323.
[44] Boyer, Michel, and Tal Mor. "Comment on “Semiquantum-key distribution using less than four quantum states”." Physical Review A 83.4 (2011): 046301.
[45] Sun, Zhi-Wei, Rui-Gang Du, and Dong-Yang Long. "Quantum key distribution with limited classical bob." International Journal of Quantum Information 11.01 (2013): 1350005.
[46] Wang, Jian, et al. "Semiquantum secret sharing using two-particle entangled state." International Journal of Quantum Information 10.05 (2012): 1250050.
[47] Xie, Chen, Lvzhou Li, and Daowen Qiu. "A novel semi-quantum secret sharing scheme of specific bits." International Journal of Theoretical Physics 54.10 (2015): 3819-3824.
[48] Zou, Xiangfu, et al. "Semiquantum key distribution without invoking the classical party’s measurement capability." Quantum Information Processing 14.8 (2015): 2981-2996.
[49] Luo, Yi-Ping, and Tzonelih Hwang. "Authenticated semi-quantum direct communication protocols using Bell states." Quantum Information Processing 15.2 (2016): 947-958.
[50] Shukla, Chitra, Kishore Thapliyal, and Anirban Pathak. "Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue." Quantum Information Processing 16.12 (2017): 295.
[51] Li, Qin, Wai Hong Chan, and Shengyu Zhang. "Semiquantum key distribution with secure delegated quantum computation." Scientific reports 6 (2016): 19898.
[52] Zou, Xiangfu, and Daowen Qiu. "Reply to “Comment on ‘Semiquantum-key distribution using less than four quantum states’”." Physical Review A 83.4 (2011): 046302.
[53] Zhang, Wei, Daowen Qiu, and Paulo Mateus. "Security of a single-state semi-quantum key distribution protocol." Quantum Information Processing 17 (2018): 1-21.
[54] Gao, Gan, Yue Wang, and Dong Wang. "Multiparty semiquantum secret sharing based on rearranging orders of qubits." Modern Physics Letters B 30.10 (2016): 1650130.
[55] Li, Chuan-Ming, et al. "Authenticated semi-quantum key distributions without classical channel." Quantum Information Processing 15.7 (2016): 2881-2893.
[56] Gao, Xiang, Shibin Zhang, and Yan Chang. "Cryptanalysis and improvement of the semi-quantum secret sharing protocol." International Journal of Theoretical Physics 56.8 (2017): 2512-2520.
[57] Gu, Jun, Po-hua Lin, and Tzonelih Hwang. "Double C-NOT attack and counterattack on ‘Three-step semi-quantum secure direct communication protocol’." Quantum Information Processing 17.7 (2018): 182.
[58] Meslouhi, A., and Yassine Hassouni. "Cryptanalysis on authenticated semi-quantum key distribution protocol using Bell states." Quantum Information Processing 16.1 (2017): 18.
[59] Yan, LiLi, et al. "Semi-quantum protocol for deterministic secure quantum communication using Bell states." Quantum Information Processing 17.11 (2018): 315.
[60] Gao, Gan, Yue Wang, and Dong Wang. "Cryptanalysis of a semi-quantum secret sharing scheme based on Bell states." Modern Physics Letters B 32.09 (2018): 1850117.
[61] Ye, Tian-Yu, and Chong-Qiang Ye. "Semi-quantum Dialogue Based on Single Photons." International Journal of Theoretical Physics 57.5 (2018): 1440-1454.
[62] Li, Zhulin, et al. "Limited resource semiquantum secret sharing." Quantum Information Processing 17.10 (2018): 285.
[63] Xie, Chen, et al. "Semi-quantum Secure Direct Communication Scheme Based on Bell States." International Journal of Theoretical Physics 57.6 (2018): 1881-1887.
[64] Yin, Ai Han, and Yan Tong. "A novel semi-quantum secret sharing scheme using entangled states." Modern Physics Letters B 32.22 (2018): 1850256.
[65] Chen, Bingren, Wei Yang, and Liusheng Huang. "Cryptanalysis and improvement of the novel semi-quantum secret sharing scheme based on Bell states." Modern Physics Letters B 32.25 (2018): 1850294.
[66] Bennett, Charles H. "Quantum crytography." Proc. IEEE Int. Conf. Computers, Systems, and Signal Processing, Bangalore, India, 1984. 1984.
[67] Pan, Jian-Wei, et al. "Experimental entanglement swapping: entangling photons that never interacted." Physical Review Letters 80.18 (1998): 3891.
[68] Zukowski, Marek, et al. "``Event-ready-detectors'Bell experiment via entanglement swapping." Physical Review Letters 71 (1993): 4287-4290.
[69] Karimipour, Vahid, Alireza Bahraminasab, and Saber Bagherinezhad. "Entanglement swapping of generalized cat states and secret sharing." Physical Review A 65.4 (2002): 042320.
[70] Cai, Qing-Yu. "Eavesdropping on the two-way quantum communication protocols with invisible photons." Physics Letters A 351.1-2 (2006): 23-25.
[71] Deng, Fu-Guo, et al. "Improving the security of multiparty quantum secret sharing against Trojan horse attack." Physical Review A 72.4 (2005): 044302.
[72] Gisin, Nicolas, et al. "Quantum cryptography." Reviews of modern physics 74.1 (2002): 145.
[73] Lucamarini, Marco, and Stefano Mancini. "Secure deterministic communication without entanglement." Physical review letters 94.14 (2005): 140501.
[74] Peres, Asher. Quantum theory: concepts and methods. Vol. 57. Springer Science & Business Media, 2006.
[75] Gu, Jun, Chih-Yung Ho, and Tzonelih Hwang. "Statistics attack on ‘quantum private comparison with a malicious third party’and its improvement." Quantum Information Processing 17.2 (2018): 23.
[76] Peter W Shor, "Algorithms for quantum computation: Discrete logarithms and factoring," in Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on, pp. 124-134, 1994.
[77] Lo Hoi-Kwong, Xiongfeng Ma and Kai Chen, "Decoy state quantum key distribution." Physical review letters 94.23: 230504 (2005).
[78] Bennett Charles H, "Quantum cryptography using any two nonorthogonal states." Physical review letters 68.21: 3121 (1992).
[79] Bennett Charles H., Gilles Brassard and N. David Mermin, "Quantum cryptography without Bell’s theorem." Physical Review Letters 68.5: 557 (1992).
[80] Long Gui-Lu and Xiao-Shu Liu, "Theoretically efficient high-capacity quantum-key-distribution scheme." Physical Review A 65.3: 032302 (2002).
[81] Nicolas J. Cerf, Mohamed Bourennane, Anders Karlsson and Nicolas Gisin, "Security of quantum key distribution using d-level systems." Physical Review Letters 88.12: 127902 (2002).
[82] Lo Hoi-Kwong, Marcos Curty and Bing Qi, "Measurement-device-independent quantum key distribution." Physical review letters 108.13: 130503 (2012).
[83] Fre´de´ric Grosshans, Gilles Van Assche, Je´roˆme Wenger, Rosa Brouri, Nicolas J. Cerf and Philippe Grangier, "Quantum key distribution using gaussian-modulated coherent states." Nature 421.6920: 238 (2003).
[84] Boström Kim and Timo Felbinger, "Deterministic secure direct communication using entanglement." Physical Review Letters 89.18: 187902 (2002).
[85] Deng Fu-Guo and Gui Lu Long, "Secure direct communication with a quantum one-time pad." Physical Review A 69.5: 052319 (2004).
[86] Chuan Wang, Fu-Guo Deng, Yan-Song Li, Xiao-Shu Liu and Gui Lu Long, "Quantum secure direct communication with high-dimension quantum superdense coding." Physical Review A 71.4: 044305 (2005).
[87] Beller Mara, “Quantum dialogue: The making of a revolution.” University of Chicago Press, 2001.
[88] Nguyen Ba An, "Quantum dialogue." Physics Letters A 328.1: 6-10 (2004).
[89] Hillery Mark, Vladimír Bužek, and André Berthiaume, "Quantum secret sharing." Physical Review A 59.3: 1829 (1999).
[90] Li Xiao, Gui Lu Long, Fu-Guo Deng and Jian-Wei Pan, "Efficient multiparty quantum-secret-sharing schemes." Physical Review A 69.5: 052307 (2004).
[91] Karlsson, Anders, Masato Koashi, and Nobuyuki Imoto, "Quantum entanglement for secret sharing and secret splitting." Physical Review A 59.1: 162 (1999).
[92] Yan Feng-Li and Ting Gao, "Quantum secret sharing between multiparty and multiparty without entanglement." Physical Review A 72.1: 012304 (2005).
[93] Krawec, Walter O. "Restricted attacks on semi-quantum key distribution protocols." Quantum information processing 13.11 (2014): 2417-2436.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-02-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-02-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw