進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2901201917050900
論文名稱(中文) 矽基複合材於鋰離子電池負極材料之應用
論文名稱(英文) Si-based composite as negative electrode materials for lithium ion batteries
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 107
學期 1
出版年 108
研究生(中文) 侯尚杰
研究生(英文) Shang-Chieh Hou
學號 N58001044
學位類別 博士
語文別 中文
論文頁數 150頁
口試委員 指導教授-黃肇瑞
共同指導教授-張家欽
口試委員-劉全璞
口試委員-方冠榮
口試委員-林士剛
口試委員-許文東
口試委員-李志浩
口試委員-王聖璋
中文關鍵字 鋰離子電池  Si基負極材  高能量機械球磨  機械化學反應  修飾及熱處理 
英文關鍵字 LIBs  Si-based composite  negative electrode  HEMM  mechanochemical reaction 
學科別分類
中文摘要 能源短缺,石化燃油造成的PM 2.5污染,已成為人類永續發展的夢靨,因此環保意識不斷的提昇,包含潔淨能源的獲得、能源的儲存管理及使用效率相關課題獲得大量的資源投入,期能打造人類社會永續經營的環境。在能源儲存電池方面,鋰離子電池被視為集電容量、效率、環保及方便性為一身的儲能裝置。近年來3C電子裝置,電動工具,電動車,智慧電網成長快速,使得全球可充式鋰離子電池需求市場逐年快速成長。因此,提昇鋰離子電池電容量及效能,延長對應裝置的使用時間已達克不容緩的時刻。
本研究選擇Si當作研究主體;室溫下Si的理論電容值可達3580 mAh g-1,遠勝於目前商業化的C負極材料,理論電容量為372 mAh g-1。Si元素在地殼的含量排名第二,Si元素的提純技術在太陽能及半導體產業已臻成熟,高純度原料Si在取得上不虞匱乏。另一方面,我們以高能量機械球磨、粉體表面改質及熱處理為核心發展技術,開發下一世代鋰離子電池Si基負極材。相較於以化學冶金的方式;使用Si的化學前驅物再經複雜的製程轉化及蝕刻得到具有奈米尺度或特殊結構的Si基材料,上述的技術符合可工程化,可量產性及再現性,在成本上具有競爭力。本研究分作三部分;在第一階段發展由上而下高能量球磨技術對Si做細化及改質。第二階段我們開發不同於傳統高溫碳化的方式,利用葡萄糖對第一階段得到的矽粉進行表面修飾,製作具實用性的單位面積高負載及單位面積高電容極片。第三階段為了進一步提昇Si基負極材的強度和導電度,我們於Si材加入CuO進行高能量球磨,開發合適的機械化學反應法,成功合成Si/Cu3Si複合材,進一步提昇單位面積高電容的循環測試特性。
英文摘要 In this work, we have developed a robust, cost-effect and friendly to operators and environment process to synthesize the Si-based composite powder as negative electrode materials for lithium ion batteries (LIBs). The feature of this research includes construction of top-down method of high energy mechanical milling (HEMM) to approach nanocrystalline/amorphous Si phase with dangling bonds, wet milling to reduced size of Si aggregate powder, glucose modification to transfer function group to the surface of Si enhancing formation of solid electrolyte interface, deposition of carbon layer on HEMMed via glucose carbonization. C-coated Si powder alleviates volume expansion/contraction upon charge and discharge process Alloy designed Si/Cu3Si composite powder via mechanochemical reaction strengthens Si-based composite and enhances conductivity. Thus, Si-based composite powder as the negative electrode performs better electrochemical properties.
論文目次 中文摘要 I
Extend abstract II
總目錄 XII
圖目錄 XV
表目錄 XXII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
第二章 文獻回顧 2
2.1 鋰離子電池的發展與應用 2
2.2 鋰離子電池結構與工作原理 5
2.3 鋰離子電池電極材料介紹 6
2.3.1 負極材料 6
2.3.2 正極材料 9
2.4 矽基負極材料的挑戰 18
2.4.1 矽基活性材料崩解及負極破壞 20
2.4.2 不安定固態-電解質界面 24
2.5 矽基負極材料發展策略 28
2.5.1 0維矽基活性材 31
2.5.2 1維矽基活性材 42
2.5.3 2維矽基活性材 46
2.5.4 3維矽基活性材 48
2.5.5 矽基合金複合物活性材 51
2.6 矽基負極材料的工程化策略 56
2.6.1 單位面積高電容之矽基負極材(奈米結構/微米尺度) 56
2.6.2 矽基負極材料的成本 59
第三章 實驗方法與步驟 61
3.1. 實驗設計與架構 61
3.2. 矽基負極材製備 62
3.2.1. 高能量機械球磨協同濕式球磨改質之矽材製備 63
3.2.2. 葡萄糖衍生物修飾及熱處理之矽材製備 63
3.2.3. 矽/矽化三銅合金粉末之製備 64
3.3. 材料物性分析 65
3.3.1. X-ray繞射分析儀 (X-ray diffraction spectrometer: XRD) 65
3.3.2. 掃描式電子顯微鏡 (Scanning electron microscopy, SEM) 66
3.3.3. 高解析穿透式電子顯微鏡 (High Resolution transmission electron microscopy, HR-TEM) 66
3.3.4. X光光電子能譜儀(X-ray photonelectron spectroscopy,XPS) 67
3.3.5. 傅立葉轉換紅外線光譜儀 (Fourier transform Infrared spectrometer: FTIR) 68
3.3.6. 熱重分析儀 (Thermogravimetric analysis, TGA) 68
3.3.7. 粒徑分佈量測儀 (Particle size distribution analyzer, PSD) 68
3.3.8. 比表面積與孔隙度分析儀 (Specific surface area and porosimetry analyzer) 69
3.4. 2032半電池性質測試 69
3.4.1. 極片製作 70
3.4.2. 2032鈕扣型電池組裝 71
3.4.3. 電池電化學特性分析 71
第四章 結果與討論 73
4.1 高能量球磨與濕式研磨對矽負極材的協同效應 73
4.1.1 高能量球磨和濕式研磨對矽材結構的影響 73
4.1.1.1 金相分析 73
4.1.1.2 粉末X-ray繞射分析 77
4.1.1.3 粉末表面成份分析 78
4.1.2 高能量球磨和濕式球磨對矽負極材電化學特性的影響 82
4.1.2.1 電池化成行為分析 82
4.1.2.2 電池循環壽命及充放電能力測試 85
4.1.2.3 循環伏安法分析 87
4.1.2.4 即時同步XRD分析 88
4.1.2.5 極片循環測試後金相分析 91
4.2 葡萄糖衍生物對矽負極材的協同效應 92
4.2.1 葡萄糖衍生物對矽材結構的影響 92
4.2.1.1 金相分析 92
4.2.1.2 粉末X-ray繞射分析 94
4.2.1.3 熱重分析 95
4.2.1.4 粉末表面成份分析 96
4.2.2 葡萄糖衍生物對矽負極材電化學特性的影響 101
4.2.2.1 電池化成行為分析 101
4.2.2.2 電池循環壽命及充放電能力測試 104
4.2.2.3 循環伏安法分析 108
4.2.2.4 極片循環測試後金相分析 110
4.3 Si/Cu3Si基複合負極材 112
4.3.1 Si/Cu3Si基複合材的結構特性 112
4.3.1.1 Si/Cu3Si基複合材製備分析 112
4.3.1.2 金相分析 113
4.3.1.3 粉末X-ray繞射分析 116
4.3.1.4 熱重分析 118
4.3.1.5 粉末表面成份分析 118
4.3.2 Si/Cu3Si基複合材電化學特性 122
4.3.2.1 電池化成行為分析 122
4.3.2.2 電池循環壽命及充放電能力測試 123
4.3.2.3 循環伏安法分析 126
4.3.2.4 極片循環測試後X-ray繞射分析 128
第五章 結論 130
第六章 未來可能性工作 133
參考文獻 134
參考文獻 [1] D. Larcher and J. M. Tarascon, "Towards greener and more sustainable batteries for electrical energy storage," Nature Chemistry, Review Article vol. 7, pp. 19-29, 11/17/online 2015.
[2] J. W. Choi and D. Aurbach, "Promise and reality of post-lithium-ion batteries with high energy densities," Nature Reviews Materials, Review Article vol. 1, p. 16013, 03/31/online 2016.
[3] J. Liu et al., "Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid," Advanced Functional Materials, vol. 23, no. 8, pp. 929-946, 2013.
[4] B. A. Boukamp, G. C. Lesh, and R. A. Huggins, "All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix," Journal of The Electrochemical Society, vol. 128, no. 4, pp. 725-729, April 1, 1981 1981.
[5] U. Kasavajjula, C. S. Wang, and A. J. Appleby, "Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells," Journal of Power Sources, vol. 163, no. 2, pp. 1003-1039, Jan 2007.
[6] J. R. Szczech and S. Jin, "Nanostructured silicon for high capacity lithium battery anodes," Energy & Environmental Science, vol. 4, no. 1, pp. 56-72, Jan 2011.
[7] X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, "Size-Dependent Fracture of Silicon Nanoparticles During Lithiation," ACS Nano, vol. 6, no. 2, pp. 1522-1531, 2012/02/28 2012.
[8] C. K. Chan et al., "High-performance lithium battery anodes using silicon nanowires," Nature Nanotechnology, vol. 3, no. 1, pp. 31-35, Jan 2008.
[9] M. H. Park et al., "Silicon Nanotube Battery Anodes," (in English), Nano Letters, Article vol. 9, no. 11, pp. 3844-3847, Nov 2009.
[10] J. Cho, "Porous Si anode materials for lithium rechargeable batteries," Journal of Materials Chemistry, vol. 20, no. 20, pp. 4009-4014, 2010.
[11] M. Y. Ge et al., "Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon," Nano Letters, vol. 14, no. 1, pp. 261-268, Jan 2014.
[12] I. S. Kim and P. N. Kumta, "High capacity Si/C nanocomposite anodes for Li-ion batteries," Journal of Power Sources, vol. 136, no. 1, pp. 145-149, Sep 2004.
[13] P. J. Zuo, G. P. Yin, X. F. Hao, Z. L. Yang, Y. L. Ma, and Z. G. Gao, "Synthesis and electrochemical performance of Si/Cu and Si/Cu/graphite composite anode," Materials Chemistry and Physics, vol. 104, no. 2-3, pp. 444-447, Aug 2007.
[14] T. H. Hwang, Y. M. Lee, B. S. Kong, J. S. Seo, and J. W. Choi, "Electrospun Core-Shell Fibers for Robust Silicon Nanoparticle-Based Lithium Ion Battery Anodes," Nano Letters, vol. 12, no. 2, pp. 802-807, Feb 2012.
[15] N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. M. Wang, and Y. Cui, "A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes," Nano Letters, vol. 12, no. 6, pp. 3315-3321, Jun 2012.
[16] L. Pan, H. B. Wang, D. C. Gao, S. Y. Chen, L. Tan, and L. Li, "Facile synthesis of yolk-shell structured Si-C nanocomposites as anodes for lithium-ion batteries," Chemical Communications, vol. 50, no. 44, pp. 5878-5880, 2014.
[17] K. Schroder et al., "The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes," Chemistry of Materials, vol. 27, no. 16, pp. 5531-5542, Aug 2015.
[18] A. Magasinski et al., "Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid," ACS Applied Materials & Interfaces, vol. 2, no. 11, pp. 3004-3010, 2010/11/24 2010.
[19] J. Zhou et al., "Cu3Si@Si core-shell nanoparticles synthesized using a solid-state reaction and their performance as anode materials for lithium ion batteries," Nanoscale, 10.1039/C5NR04456A vol. 7, no. 37, pp. 15075-15079, 2015.
[20] N. Shimoi, Z. Qiwu, S. Bahena-Garrido, and Y. Tanaka, "Mechanochemical approaches to employ silicon as a lithium-ion battery anode," AIP Advances, vol. 5, no. 5, p. 057142, 2015.
[21] Z. Du, H. Liu, S. N. Ellis, R. A. Dunlap, M. Zhu, and M. N. Obrovac, "Electrochemistry of CuXSi1-X Alloys in Li Cells," Journal of The Electrochemical Society, vol. 163, no. 7, pp. A1275-A1279, January 1, 2016 2016.
[22] Y. Cheng, Z. Yi, C. Wang, L. Wang, Y. Wu, and L. Wang, "Influence of copper addition for silicon-carbon composite as anode materials for lithium ion batteries," RSC Advances, 10.1039/C6RA12332E vol. 6, no. 62, pp. 56756-56764, 2016.
[23] S.-O. Kim and A. Manthiram, "Low-cost carbon-coated Si-Cu3Si-Al2O3 nanocomposite anodes for high-performance lithium-ion batteries," Journal of Power Sources, vol. 332, pp. 222-229, 2016/11/15/ 2016.
[24] J.-Y. Woo et al., "Cu3Si-doped porous-silicon particles prepared by simplified chemical vapor deposition method as anode material for high-rate and long-cycle lithium-ion batteries," Journal of Alloys and Compounds, vol. 701, pp. 425-432, 2017/04/15/ 2017.
[25] L. Deng et al., "Facile synthesis of N-doped carbon-coated Si/Cu alloy with enhanced cyclic performance for lithium ion batteries," RSC Advances, 10.1039/C6RA15847A vol. 6, no. 81, pp. 78100-78105, 2016.
[26] C. Suryanarayana, "Mechanical alloying and milling," (in English), Progress in Materials Science, Review vol. 46, no. 1-2, pp. 1-184, 2001.
[27] L. Wei, C. Chen, Z. Hou, and H. Wei, "Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries," Sci Rep, vol. 6, p. 19583, Jan 20 2016, Art. no. 19583.
[28] M. Li et al., "Nanosilica/carbon composite spheres as anodes in Li-ion batteries with excellent cycle stability," Journal of Materials Chemistry A, 10.1039/C4TA05288A vol. 3, no. 4, pp. 1476-1482, 2015.
[29] I. A. Rahman, P. Vejayakumaran, C. S. Sipaut, J. Ismail, and C. K. Chee, "Size-dependent physicochemical and optical properties of silica nanoparticles," Materials Chemistry and Physics, vol. 114, no. 1, pp. 328-332, 2009/03/15/ 2009.
[30] Z. Liu et al., "Silica-Derived Hydrophobic Colloidal Nano-Si for Lithium-Ion Batteries," ACS Nano, vol. 11, no. 6, pp. 6065-6073, 2017/06/27 2017.
[31] W. L. Xu, S. S. S. Vegunta, and J. C. Flake, "Surface-modified silicon nanowire anodes for lithium-ion batteries," Journal of Power Sources, vol. 196, no. 20, pp. 8583-8589, Oct 2011.
[32] C. Li, T. F. Shi, D. C. Li, H. Yoshitake, and H. Y. Wang, "Effect of surface modification on electrochemical performance of nano-sized Si as an anode material for Li-ion batteries," RSC Advances, vol. 6, no. 41, pp. 34715-34723, 2016.
[33] C. C. Nguyen, T. Yoon, D. M. Seo, P. Guduru, and B. L. Lucht, "Systematic Investigation of Binders for Silicon Anodes: Interactions of Binder with Silicon Particles and Electrolytes and Effects of Binders on Solid Electrolyte Interphase Formation," ACS Applied Materials & Interfaces, vol. 8, no. 19, pp. 12211-12220, May 2016.
[34] R. V. Kumar and T. Sarakonsri, "Introduction to Electrochemical Cells," in High Energy Density Lithium Batteries: Wiley-VCH Verlag GmbH & Co. KGaA, 2010, pp. 1-25.
[35] J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature, vol. 414, p. 359, 11/15/online 2001.
[36] D. Andre et al., "Future generations of cathode materials: an automotive industry perspective," Journal of Materials Chemistry A, 10.1039/C5TA00361J vol. 3, no. 13, pp. 6709-6732, 2015.
[37] R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, "A review of advanced and practical lithium battery materials," Journal of Materials Chemistry, 10.1039/C0JM04225K vol. 21, no. 27, pp. 9938-9954, 2011.
[38] M. V. Reddy, G. V. Subba Rao, and B. V. R. Chowdari, "Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries," Chemical Reviews, vol. 113, no. 7, pp. 5364-5457, 2013/07/10 2013.
[39] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, "Li-ion battery materials: present and future," Materials Today, vol. 18, no. 5, pp. 252-264, 2015/06/01/ 2015.
[40] B. Xu, D. Qian, Z. Wang, and Y. S. Meng, "Recent progress in cathode materials research for advanced lithium ion batteries," Materials Science and Engineering: R: Reports, vol. 73, no. 5, pp. 51-65, 2012/05/01/ 2012.
[41] N. Liu, W. Li, M. Pasta, and Y. Cui, "Nanomaterials for electrochemical energy storage," Frontiers of Physics, journal article vol. 9, no. 3, pp. 323-350, June 01 2014.
[42] Y. Jin, B. Zhu, Z. Lu, N. Liu, and J. Zhu, "Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery," Advanced Energy Materials, vol. 7, no. 23, p. 1700715, 2017.
[43] H. Okamoto, "The Li-Si (Lithium-Silicon) system," Bulletin of Alloy Phase Diagrams, journal article vol. 11, no. 3, pp. 306-312, June 01 1990.
[44] M. Gu et al., "Electronic Origin for the Phase Transition from Amorphous LixSi to Crystalline Li15Si4," ACS Nano, vol. 7, no. 7, pp. 6303-6309, 2013/07/23 2013.
[45] H. Wu and Y. Cui, "Designing nanostructured Si anodes for high energy lithium ion batteries," Nano Today, vol. 7, no. 5, pp. 414-429, 2012/10/01/ 2012.
[46] J. Li and J. R. Dahn, "An in situ X-ray diffraction study of the reaction of Li with crystalline Si," Journal of the Electrochemical Society, vol. 154, no. 3, pp. A156-A161, 2007.
[47] Z.-L. Xu, X. Liu, Y. Luo, L. Zhou, and J.-K. Kim, "Nanosilicon anodes for high performance rechargeable batteries," Progress in Materials Science, vol. 90, pp. 1-44, 2017/10/01/ 2017.
[48] M. A. Rahman, G. Song, A. I. Bhatt, Y. C. Wong, and C. Wen, "Nanostructured Silicon Anodes for High-Performance Lithium-Ion Batteries," Advanced Functional Materials, vol. 26, no. 5, pp. 647-678, 2016.
[49] J. B. Goodenough and Y. Kim, "Challenges for Rechargeable Li Batteries," Chemistry of Materials, vol. 22, no. 3, pp. 587-603, 2010/02/09 2010.
[50] P. Verma, P. Maire, and P. Novák, "A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries," Electrochimica Acta, vol. 55, no. 22, pp. 6332-6341, 2010/09/01/ 2010.
[51] S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D. L. Wood, "The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling," Carbon, vol. 105, pp. 52-76, 2016/08/01/ 2016.
[52] A. Wang, S. Kadam, H. Li, S. Shi, and Y. Qi, "Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries," npj Computational Materials, vol. 4, no. 1, p. 15, 2018/03/26 2018.
[53] G. Ramos-Sanchez et al., "Computational Studies of Interfacial Reactions at Anode Materials: Initial Stages of the Solid-Electrolyte-Interphase Layer Formation," Journal of Electrochemical Energy Conversion and Storage, vol. 13, no. 3, pp. 031002-031002-10, 2016.
[54] M. Nie, D. P. Abraham, Y. Chen, A. Bose, and B. L. Lucht, "Silicon Solid Electrolyte Interphase (SEI) of Lithium Ion Battery Characterized by Microscopy and Spectroscopy," The Journal of Physical Chemistry C, vol. 117, no. 26, pp. 13403-13412, 2013/07/03 2013.
[55] J.-Y. Li, Q. Xu, G. Li, Y.-X. Yin, L.-J. Wan, and Y.-G. Guo, "Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries," Materials Chemistry Frontiers, 10.1039/C6QM00302H vol. 1, no. 9, pp. 1691-1708, 2017.
[56] M. Ashuri, Q. He, and L. L. Shaw, "Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter," Nanoscale, 10.1039/C5NR05116A vol. 8, no. 1, pp. 74-103, 2016.
[57] İ. Doğan et al., "Ultrahigh throughput plasma processing of free standing silicon nanocrystals with lognormal size distribution," Journal of Applied Physics, vol. 113, no. 13, p. 134306, 2013.
[58] A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin, "High-performance lithium-ion anodes using a hierarchical bottom-up approach," Nature Materials, Article vol. 9, p. 353, 03/14/online 2010.
[59] L. Mangolini, "Synthesis, properties, and applications of silicon nanocrystals," Journal of Vacuum Science & Technology B, vol. 31, no. 2, p. 020801, 2013.
[60] V. A. Svetlichnyi et al., "Physicochemical investigation of nanopowders prepared by laser ablation of crystalline silicon in water," Advanced Powder Technology, vol. 26, no. 2, pp. 478-486, 2015/03/01/ 2015.
[61] Z. Ma, T. Li, Y. L. Huang, J. Liu, Y. Zhou, and D. Xue, "Critical silicon-anode size for averting lithiation-induced mechanical failure of lithium-ion batteries," RSC Advances, 10.1039/C3RA41052H vol. 3, no. 20, pp. 7398-7402, 2013.
[62] M. Gauthier et al., "A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries," Energy & Environmental Science, vol. 6, no. 7, p. 2145, 2013.
[63] H.-W. Kim, D. J. Lee, H. Lee, J. Song, H.-T. Kim, and J.-K. Park, "Glucosamine-derived encapsulation of silicon nanoparticles for high-performance lithium ion batteries," Journal of Materials Chemistry A, 10.1039/C4TA02199A vol. 2, no. 35, pp. 14557-14562, 2014.
[64] Y. Hwa, W.-S. Kim, S.-H. Hong, and H.-J. Sohn, "High capacity and rate capability of core–shell structured nano-Si/C anode for Li-ion batteries," Electrochimica Acta, vol. 71, pp. 201-205, 2012/06/01/ 2012.
[65] X. Li et al., "Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes," Journal of Materials Chemistry, 10.1039/C2JM31286G vol. 22, no. 22, pp. 11014-11017, 2012.
[66] N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. Wang, and Y. Cui, "A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes," Nano Letters, vol. 12, no. 6, pp. 3315-3321, 2012/06/13 2012.
[67] L. Pan, H. Wang, D. Gao, S. Chen, L. Tan, and L. Li, "Facile synthesis of yolk–shell structured Si–C nanocomposites as anodes for lithium-ion batteries," Chemical Communications, 10.1039/C4CC01728E vol. 50, no. 44, pp. 5878-5880, 2014.
[68] H. Tao, L.-Z. Fan, W.-L. Song, M. Wu, X. He, and X. Qu, "Hollow core–shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries," Nanoscale, 10.1039/C3NR03090C vol. 6, no. 6, pp. 3138-3142, 2014.
[69] Y. Ru, D. G. Evans, H. Zhu, and W. Yang, "Facile fabrication of yolk–shell structured porous Si–C microspheres as effective anode materials for Li-ion batteries," RSC Advances, 10.1039/C3RA44752A vol. 4, no. 1, pp. 71-75, 2014.
[70] L. Su, J. Xie, Y. Xu, L. Wang, Y. Wang, and M. Ren, "Preparation and lithium storage performance of yolk–shell Si@void@C nanocomposites," Physical Chemistry Chemical Physics, 10.1039/C5CP01954K vol. 17, no. 27, pp. 17562-17565, 2015.
[71] C. K. Chan et al., "High-performance lithium battery anodes using silicon nanowires," Nature Nanotechnology, vol. 3, p. 31, 12/16/online 2007.
[72] Y. Yang et al., "Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries," Nanoscale, 10.1039/C3NR02788K vol. 5, no. 18, pp. 8689-8694, 2013.
[73] M. R. Zamfir, H. T. Nguyen, E. Moyen, Y. H. Lee, and D. Pribat, "Silicon nanowires for Li-based battery anodes: a review," Journal of Materials Chemistry A, 10.1039/C3TA11714F vol. 1, no. 34, pp. 9566-9586, 2013.
[74] M.-H. Park et al., "Silicon Nanotube Battery Anodes," Nano Letters, vol. 9, no. 11, pp. 3844-3847, 2009/11/11 2009.
[75] D. Li and Y. Xia, "Electrospinning of Nanofibers: Reinventing the Wheel?," Advanced Materials, vol. 16, no. 14, pp. 1151-1170, 2004.
[76] J.-W. Jung, C.-L. Lee, S. Yu, and I.-D. Kim, "Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review," Journal of Materials Chemistry A, 10.1039/C5TA06844D vol. 4, no. 3, pp. 703-750, 2016.
[77] T. H. Hwang, Y. M. Lee, B.-S. Kong, J.-S. Seo, and J. W. Choi, "Electrospun Core–Shell Fibers for Robust Silicon Nanoparticle-Based Lithium Ion Battery Anodes," Nano Letters, vol. 12, no. 2, pp. 802-807, 2012/02/08 2012.
[78] J. P. Maranchi, A. F. Hepp, and P. N. Kumta, "High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries," Electrochemical and Solid-State Letters, vol. 6, no. 9, pp. A198-A201, September 1, 2003 2003.
[79] J. Luo, X. Zhao, J. Wu, H. D. Jang, H. H. Kung, and J. Huang, "Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes," The Journal of Physical Chemistry Letters, vol. 3, no. 13, pp. 1824-1829, 2012/07/05 2012.
[80] M. Ko, S. Chae, S. Jeong, P. Oh, and J. Cho, "Elastic a-Silicon Nanoparticle Backboned Graphene Hybrid as a Self-Compacting Anode for High-Rate Lithium Ion Batteries," ACS Nano, vol. 8, no. 8, pp. 8591-8599, 2014/08/26 2014.
[81] Q. Pan et al., "Micro-sized spherical silicon@carbon@graphene prepared by spray drying as anode material for lithium-ion batteries," Journal of Alloys and Compounds, vol. 723, pp. 434-440, 2017/11/05/ 2017.
[82] W. Sun, R. Hu, M. Zhang, J. Liu, and M. Zhu, "Binding of carbon coated nano-silicon in graphene sheets by wet ball-milling and pyrolysis as high performance anodes for lithium-ion batteries," Journal of Power Sources, vol. 318, pp. 113-120, 2016/06/30/ 2016.
[83] J. Kim et al., "3D Si/C particulate nanocomposites internally wired with graphene networks for high energy and stable batteries," Journal of Materials Chemistry A, 10.1039/C5TA04681E vol. 3, no. 36, pp. 18684-18695, 2015.
[84] C. Fang, Y. Deng, Y. Xie, J. Su, and G. Chen, "Improving the Electrochemical Performance of Si Nanoparticle Anode Material by Synergistic Strategies of Polydopamine and Graphene Oxide Coatings," The Journal of Physical Chemistry C, vol. 119, no. 4, pp. 1720-1728, 2015/01/29 2015.
[85] M. Ge et al., "Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon," Nano Letters, vol. 14, no. 1, pp. 261-268, 2014/01/08 2014.
[86] L. Zong et al., "Nanopurification of silicon from 84% to 99.999% purity with a simple and scalable process," Proceedings of the National Academy of Sciences, vol. 112, no. 44, pp. 13473-13477, 2015.
[87] J. S. Kim, M. Halim, D. Byun, and J. K. Lee, "Amorphous carbon-coated prickle-like silicon of micro and nano hybrid anode materials for lithium-ion batteries," Solid State Ionics, vol. 260, pp. 36-42, 2014/07/01/ 2014.
[88] H. Jia, P. Gao, J. Yang, J. Wang, Y. Nuli, and Z. Yang, "Novel Three-Dimensional Mesoporous Silicon for High Power Lithium-Ion Battery Anode Material," Advanced Energy Materials, vol. 1, no. 6, pp. 1036-1039, 2011.
[89] A. G. Tamirat et al., "Highly stable carbon coated Mg2Si intermetallic nanoparticles for lithium-ion battery anode," Journal of Power Sources, vol. 384, pp. 10-17, 2018/04/30/ 2018.
[90] J.-S. Lee, M.-S. Shin, and S.-M. Lee, "Electrochemical properties of polydopamine coated Ti-Si alloy anodes for Li-ion batteries," Electrochimica Acta, vol. 222, pp. 1200-1209, 2016/12/20/ 2016.
[91] A. Ladam et al., "One-pot ball-milling synthesis of a Ni-Ti-Si based composite as anode material for Li-ion batteries," Electrochimica Acta, vol. 245, pp. 497-504, 2017/08/10/ 2017.
[92] Z. Du, S. N. Ellis, R. A. Dunlap, and M. N. Obrovac, "NixSi1-x Alloys Prepared by Mechanical Milling as Negative Electrode Materials for Lithium Ion Batteries," Journal of The Electrochemical Society, vol. 163, no. 2, pp. A13-A18, January 1, 2016 2016.
[93] L. Wu, J. Yang, X. Zhou, J. Tang, Y. Ren, and Y. Nie, "Enhanced Electrochemical Performance of Heterogeneous Si/MoSi2 Anodes Prepared by a Magnesiothermic Reduction," ACS Applied Materials & Interfaces, vol. 8, no. 26, pp. 16862-16868, 2016/07/06 2016.
[94] S. Fang et al., "Rational Design of Void-Involved Si@TiO2 Nanospheres as High-Performance Anode Material for Lithium-Ion Batteries," ACS Applied Materials & Interfaces, vol. 6, no. 9, pp. 6497-6503, 2014/05/14 2014.
[95] L. Deng et al., "A Core-Shell Si@NiSi2/Ni/C Nanocomposite as an Anode Material for Lithium-ion Batteries," Electrochimica Acta, vol. 192, pp. 303-309, 2016/02/20/ 2016.
[96] S. Chae, M. Ko, S. Park, N. Kim, J. Ma, and J. Cho, "Micron-sized Fe–Cu–Si ternary composite anodes for high energy Li-ion batteries," Energy & Environmental Science, 10.1039/C6EE00023A vol. 9, no. 4, pp. 1251-1257, 2016.
[97] S.-B. Son et al., "A Highly Reversible Nano-Si Anode Enabled by Mechanical Confinement in an Electrochemically Activated LixTi4Ni4Si7 Matrix," Advanced Energy Materials, vol. 2, no. 10, pp. 1226-1231, 2012.
[98] J. Zhou et al., "Cu3Si@Si core–shell nanoparticles synthesized using a solid-state reaction and their performance as anode materials for lithium ion batteries," Nanoscale, 10.1039/C5NR04456A vol. 7, no. 37, pp. 15075-15079, 2015.
[99] S.-H. Kim, D. H. Lee, C. Park, and D.-W. Kim, "Nanocrystalline silicon embedded in an alloy matrix as an anode material for high energy density lithium-ion batteries," Journal of Power Sources, vol. 395, pp. 328-335, 2018/08/15/ 2018.
[100] B.-C. Yu, H.-Y. Kim, C. h. Park, S. K. Kim, J. W. Sung, and H.-J. Sohn, "Si Nano-crystallites embedded in Cu-Al-Fe matrix as an anode for Li secondary batteries," Electrochimica Acta, vol. 130, pp. 583-586, 2014/06/01/ 2014.
[101] S. Zhou, X. Liu, and D. Wang, "Si/TiSi2 Heteronanostructures as High-Capacity Anode Material for Li Ion Batteries," Nano Letters, vol. 10, no. 3, pp. 860-863, 2010/03/10 2010.
[102] M. Sohn, D. G. Lee, H.-I. Park, C. Park, J.-H. Choi, and H. Kim, "Microstructure Controlled Porous Silicon Particles as a High Capacity Lithium Storage Material via Dual Step Pore Engineering," Advanced Functional Materials, vol. 28, no. 23, p. 1800855, 2018.
[103] J. Su, C. Zhang, X. Chen, S. Liu, T. Huang, and A. Yu, "Carbon-shell-constrained silicon cluster derived from Al-Si alloy as long-cycling life lithium ion batteries anode," Journal of Power Sources, vol. 381, pp. 66-71, 2018/03/31/ 2018.
[104] M.-S. Shin, T.-W. Lee, J.-B. Park, S.-H. Lim, and S.-M. Lee, "Post-annealing effects on the electrochemical performance of a Si/TiSi2 heteronanostructured anode material prepared by mechanical alloying," Journal of Power Sources, vol. 344, pp. 152-159, 2017/03/15/ 2017.
[105] J. E. Cloud, Y. Wang, X. Li, T. S. Yoder, Y. Yang, and Y. Yang, "Lithium Silicide Nanocrystals: Synthesis, Chemical Stability, Thermal Stability, and Carbon Encapsulation," Inorganic Chemistry, vol. 53, no. 20, pp. 11289-11297, 2014/10/20 2014.
[106] D. Wang, M. Gao, H. Pan, J. Wang, and Y. Liu, "High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization," Journal of Power Sources, vol. 256, pp. 190-199, 2014/06/15/ 2014.
[107] N. Liu et al., "A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes," Nature Nanotechnology, vol. 9, p. 187, 02/16/online 2014.
[108] F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, "Microscopic structure of the SiO2/Si interface," Physical Review B, vol. 38, no. 9, pp. 6084-6096, 09/15/ 1988.
[109] T. Schroeder, M. Adelt, B. Richter, M. Naschitzki, M. Baumer, and H. J. Freund, "Growth of well-ordered silicon dioxide films on Mo(112)," Microelectronics Reliability, vol. 40, no. 4-5, pp. 841-844, Apr-May 2000.
[110] C. F. Guo, J. X. Mao, and D. L. Wang, "Nitrogen-doped carbon coated SiO nanoparticles Co-modified with nitrogen-doped graphene as a superior anode material for lithium-ion batteries," RSC Advances, vol. 4, no. 67, pp. 35717-35725, 2014.
[111] M. N. Obrovac and L. J. Krause, "Reversible cycling of crystalline silicon powder," Journal of the Electrochemical Society, vol. 154, no. 2, pp. A103-A108, 2007.
[112] J. Saint et al., "Towards a fundamental understanding of the improved electrochemical performance of silicon-carbon composites," Advanced Functional Materials, vol. 17, no. 11, pp. 1765-1774, Jul 2007.
[113] M. N. Obrovac and L. Christensen, "Structural changes in silicon anodes during lithium insertion/extraction," Electrochemical and Solid State Letters, vol. 7, no. 5, pp. A93-A96, 2004.
[114] S. Misra, N. Liu, J. Nelson, S. S. Hong, Y. Cui, and M. F. Toney, "In Situ X-ray Diffraction Studies of (De)lithiation Mechanism in Silicon Nanowire Anodes," ACS Nano, vol. 6, no. 6, pp. 5465-5473, Jun 2012.
[115] F. Wang et al., "Electrochemical Reaction of Lithium with Nanostructured Silicon Anodes: A Study by In-Situ Synchrotron X-Ray Diffraction and Electron Energy-Loss Spectroscopy," Advanced Energy Materials, vol. 3, no. 10, pp. 1324-1331, Oct 2013.
[116] T. D. Hatchard and J. R. Dahn, "In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon," Journal of the Electrochemical Society, vol. 151, no. 6, pp. A838-A842, 2004.
[117] W. Xu, S. S. S. Vegunta, and J. C. Flake, "Surface-modified silicon nanowire anodes for lithium-ion batteries," Journal of Power Sources, vol. 196, no. 20, pp. 8583-8589, 2011.
[118] T. Jaumann et al., "Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries," Journal of Materials Chemistry A, 10.1039/C7TA00188F vol. 5, no. 19, pp. 9262-9271, 2017.
[119] L. Wei, C. Chen, Z. Hou, and H. Wei, "Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries," Scientific Reports, Article vol. 6, p. 19583, 01/20/online 2016.
[120] L. Shi et al., "Vertical Graphene Growth on SiO Microparticles for Stable Lithium Ion Battery Anodes," Nano Letters, vol. 17, no. 6, pp. 3681-3687, 2017/06/14 2017.
[121] I. H. Son et al., "Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density," Nature Communications, Article vol. 6, p. 7393, 06/25/online 2015.
[122] R. Yi, J. Zai, F. Dai, M. L. Gordin, and D. Wang, "Dual conductive network-enabled graphene/Si–C composite anode with high areal capacity for lithium-ion batteries," Nano Energy, vol. 6, pp. 211-218, 2014/05/01/ 2014.
[123] Y.-C. Zhang et al., "Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries," Nano Energy, vol. 25, pp. 120-127, 2016/07/01/ 2016.
[124] W. Yuan, M. Wu, H. Zhao, X. Song, and G. Liu, "Baseline Si electrode fabrication and performance for the battery for Advanced Transportation Technologies Program," Journal of Power Sources, vol. 282, pp. 223-227, 2015/05/15/ 2015.
[125] F. Yubero, A. Barranco, J. A. Mejias, J. P. Espinos, and A. R. Gonzalez-Elipe, "Spectroscopic characterisation and chemical reactivity of silicon monoxide layers deposited on Cu(100)," (in English), Surface Science, Article vol. 458, no. 1-3, pp. 229-238, Jun 2000.
[126] T. Dahlang and T. Sven, "Electronic and optical properties of Cu, CuO and Cu2O studied by electron spectroscopy," Journal of Physics: Condensed Matter, vol. 24, no. 17, p. 175002, 2012.
[127] H. V., F. A., H. A., and T. H., "XPS study of the atmospheric corrosion of copper alloys of archaeological interest," Surface and Interface Analysis, vol. 36, no. 8, pp. 876-879, 2004.
[128] X. Shengqi, Z. Jingen, W. Xiaotian, and Z. Dongwen, "The reduction of CuO by Si during ball milling," Journal of Materials Science Letters, journal article vol. 15, no. 7, pp. 634-635, January 01 1996.
[129] R. R. Chromik, W. K. Neils, and E. J. Cotts, "Thermodynamic and kinetic study of solid state reactions in the Cu–Si system," Journal of Applied Physics, vol. 86, no. 8, pp. 4273-4281, 1999.
[130] J.-H. Kim, H. Kim, and H.-J. Sohn, "Addition of Cu for carbon coated Si-based composites as anode materials for lithium-ion batteries," Electrochemistry Communications, vol. 7, no. 5, pp. 557-561, 2005.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw