進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2901201912543300
論文名稱(中文) 採用不同預熱設計的甲醇燃料處理系統之可用能分析
論文名稱(英文) Exergy Analysis of Methanol Fuel Processing Systems Using Different Pre-heating Designs
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 107
學期 1
出版年 108
研究生(中文) 冉亮
研究生(英文) Muhammad Aamir Raza
學號 N36067024
學位類別 碩士
語文別 英文
論文頁數 157頁
口試委員 指導教授-吳煒
口試委員-黃世宏
口試委員-張珏庭
中文關鍵字 none 
英文關鍵字 Exergy  Exergetic efficiency  Exergy analysis  Preheat system  Preheat design  Methanol steam reforming  Methanol fuel processor  gPROMS® 
學科別分類
中文摘要 none
英文摘要 This study presents a newly developed preheat system for methanol steam reforming by reducing energy consumption. An exergy analysis is performed at power generation system for hybrid fuel cell vehicle while producing hydrogen to be fed into the fuel cell. Dynamic modelling is performed for multi-tube annular membrane methanol reformer (MTAMMR) with energy efficient raw material preheating system for hydrogen production. The MTAMMR is composed of several annular membrane methanol reformers (AMMRs). All the AMMRs in the MTAMMR are in the same specification and operated under the same operating conditions for hydrogen production. The MTAMMR is modelled by using a professional chemical engineering software named gPROMS®. The governing equations of the mathematical model in this research are calculated by the model builder in gPROMS® and thermodynamic properties are calculated by Aspen Plus. Characteristic finite difference method (CFDM) is selected to solve partial differential equations. Further kinetic expressions validation is performed for this newly developed AMMR design.

Newly developed preheat system is proposed with reducing the energy requirements by utilizing waste heat of streams from the heat exchangers with the addition of a heater and a cooler to achieve target temperatures. Plate Fin Heat exchangers are used which were designed in software named Aspen Exchanger Design & Rating, which enabled to find feasible design with respect to heat duty and weight of heat exchangers. Aspen Plus is used to design heating and cooling system for required streams. Study shows by the implementation of newly proposed preheat system, energy requirements can be reduced to 40%.
Exergy analysis, which is used to find maximum available work, is performed on 114 kW power generation system for hybrid fuel cell vehicle to analyze the irreversibilities and losses. Exergetic efficiencies are discussed on individual units and on the overall power generation system. The heat integration analysis is performed to improve the exergetic performance. Due to the exergy analysis, it is found that the newly developed integrated process can improve the exergy efficiency by 7.08%. By performing the analysis on newly proposed preheat design, exergetic losses and destruction reduced by 31.3 % and 26.90 % respectively.
論文目次 Abstract…..................................I
Chapter 1. Introduction.............................1
1.1 Energy crisis and CO2 emission....................1
1.2 Introduction of Methanol & Hydrogen..................3
1.3 Introduction to types of reactor.....................5
1.4 Methanol Steam Reforming.......................7
1.5 Preferential Oxidation Reaction....................10
1.6 Hydrogen Permeation........................12
1.7 Compact Plate Fin Heat Exchanger..................15
1.8 Introduction of PEM Fuel Cell....................17
1.9 Introduction of Exergy.......................18
1.10 Motivation...........................20
Chapter 2. Dynamic Modelling and Kinematic Validation...............23
2.1 Description of Design for MTAMMR.................23
2.1.1 Material of Construction....................26
2.1.2 Modelling Assumptions....................27
2.2 Governing equations .........................28
2.2.1 Outer tube modelling ........................28
2.2.1.1 Mass Balance, Permeation and kinematic expressions.......28
2.2.1.2 Energy Balance.…....................30
2.2.1.3 Pressure Drop........................32
2.2.1.4 Boundary and Initial Conditions.................33
2.2.2 Inner Tube Modelling….......................34
2.2.2.1 Mass balance and kinetic expressions...............34
2.2.2.2 Energy Balance......................35
2.2.2.3 Pressure Drop........................36
2.2.2.4 Boundary and Initial Condtions…..............36
2.3 Physical Properties..........................37
2.4 Operating Conditions and Design Specifications................38
2.5 Kinetic Expressions Validation......................40
2.5.1 Assumptions...........................41
2.5.2 Operating Conditions & Design Specifications.............42
2.6 Pre-heat System............................43

2.7 Results and Discussions.........................47
2.7.1 Outer Tube..........................47
(a) Mole Flow Rates Profiles of Components…................47
(b)Temperature and Pressure Profiles...................56
(c) Permeation Flux and Conversion Profiles.................59
(d) Reaction Kinetics….......................62
2.7.2 Inner Tube............................67
(a) Mole Flow Rates Profiles of Components.................67
(b) Temperature and Pressure Profiles...................74
(c) Reaction Kinetics........................78
2.8 Kinetic Expressions Validation....................82
Chapter 3. Exergy Analysis..........................85
3.1 Exergy Introduction.......................85
3.1.1 Exergy vs. Enthalpy.......................86
3.1.2 Types of energy flow.....................89
3.2 Exergy Analysis Methods.......................93
3.3 Exergy Balance...........................98
3.4 Process Consideration for Exergy Analysis..............99
3.5 Exergy Analysis of Individual Units.................100
3.5.1 Exergy of MTAMMR.....................100
(a) Exergy of Outer Tube..................102
(b) Exergy of Inner Tube..................103
(c) Overall Exergies Efficiency of MTAMMR...........104
3.5.2 Exergy of Heat Exchanger....................105
3.5.3 Exergy of Heat and Compressor.................105
3.5.4 Exergy of PEMFC.......................106
3.6 Overall exergy destruction and exergy efficiency...........108
Chapter 4. Pre-Heat system…..........................109
4.1 Design 1.............................109
4.2 Design 2...........................112
4.2.1 Heat Duty........................115
4.2.2 Energy Reduction.....................115
4.2.3 Weight of Heat Exchangers..................116
Chapter 5. Results and Discussions........................120
5.1 Design 1: Exergy Analysis.....................120
5.1.1 Exergy Results for MTAMMR................120
(a) Outer Tube...........................120
(b) Inner Tube...........................121
(c) Comparison between exergies of Outer and Inner tubes..........122
(d) Overall Exergetic Efficiency of MTAMMR............125
5.1.2 Exergy Results for Heat Exchangers..................127
5.1.3 Exergy Results for Heater and Compressor................129
5.1.4 Exergy Results for PEMFC......................129
5.1.5 Exergy Results for each Unit....................132
5.1.6 Overall Exergy Efficiency of Power Generation System...........136
5.2 Design 2: Exergy Analysis........................138
5.2.1 Heat Exchangers, Heater and Cooler Exergy Results...........138
5.2.2 Overall Exergy Efficiency of Power Generation System...........141
5.3 Comparison of Two Designs........................142
Chapter 6. Conclusion.............................148
References................................151
參考文獻 Abbas, S. Z., Dupont, V., Mahmud, T., (2016). Kinetics study and modelling of steam methane-reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor. International Journal of Hydrogen Energy 42 (5), 2889-2903.
Augustine, A. S., (2013). Supported Pd and Pd/Alloy Membranes for Water-Gas Shift Catalytic Membrane Reactors.
Authayanun, S., Saebea, D., Patcharavorachot, Y., Arpornwichanop A., (2015). Evaluation of an integrated methane autothermal reforming and high-temperature proton exchange membrane fuel cell system. Energy 80, 331-9.
Ay, M., Midilli, A., Dincer, I., (2005). Exergetic performance analysis of a PEM fuel cell. International Journal of Energy Research, 30(5), 307-321.
Basile, A., Iulianelli, A., Longo, T., Liguori, S., & De Falco, M., (2011). Pd-based selective membrane state-of-the-art Membrane reactors for hydrogen production processes Springer, 21-55.
Boudart, M., & Hwang, H., (1975). Solubility of hydrogen in small particles of palladium. Journal of Catalysis, 39(1), 44-52.
Barbieri, G., Scura, F., & Drioli, E., (2006). Equilibrium of a Pd-based membrane reactor. Desalination, 200(1-3), 679-680.
Brodyansky, V. M., (1973), Exergy Method of Thermodynamic Analysis (in Russian), Energiya, Moscow.
Coyle, E.D., Simmons, R.A., (2014). Understanding the Global Energy Crisis, Prude University Press.
Cipiti, F., Pino, L., Vita, A., Lagan, M., Recupero, V., (2013). Experimental investigation on a methane fuel processor for polymer electrolyte fuel cells. Int. J. Hydrogen Energy, 38, 2387-97.
Choi, K.S., Choi, I.J., Hwang, S.J., Kim, H.M., Dorr, J. L., Erickson, P. A., (2010). An experimental study of methanol autothermal reformation as a method of producing hydrogen for transportation applications. International Journal of Hydrogen Energy, 35(12), 6210-6217.
Cavani, F., & Trifiro, F., (1995). Alternative processes for the production of styrene. Applied Catalysis A: General, 133(2), 219-239.
Champagnie, A. M., Tsotsis, T. T., Minet, R. G., & Wagner, E., (1992). The study of ethane dehydrogenation in a catalytic membrane reactor. Journal of Catalysis, 134(2), 713-730.
Collins, J. P., Way, J. D., (1993). Preparation and characterization of a composite Palladium-ceramic membrane. Industrial & Engineering Chemistry Research, 32(12), 3006-3013.
Dimitris, I., Ouzounidou, M., Simira, P., Panos, S., Spyros, V., (2017). Dynamic Modeling and Control Analysis of a Methanol Autothermal Reforming and PEM Fuel Cell Power System. Applied Energy 208, 703–718.
Djinovic, P., Batista, J., Cehic, B., & Pintar, A. (2010). Utilization of High Specific Surface Area CuO-CeO2 Catalysts for High Temperature Processes of Hydrogen Production: Steam Re-forming of Ethanol and Methane Dry Re-forming. Journal of Physical Chemistry A, 114(11), 3939-3949.
Dewatwal, J. (2009). Design of compact plate fin heat exchanger. National Institute of Technology Rourkela.
Ni, D., Chen, L., Zhang, Z., & Sun, F., (2016). Exergetic performance optimization for new combined intercooled regenerative Brayton and inverse Brayton cycles. Applied Thermal Engineering, 102, 447-453.
Ertesvag., I.S., (2005). Energy, exergy, and extended-exergy analysis of the Norwegian society 2000, 30(5), 649-675.
Ergun, S., (1952). Fluid flow through packed columns. Chem. Eng. Prog., 48, 89-94.
Fu, C. H., Wu, J. C. S., (2007). Mathematical simulation of hydrogen production via methanol steam reforming using double-jacketed membrane reactor. International Journal of Hydrogen Energy, 32(18), 4830-4839.
Ferroni, L., Natale, A., Gatto, R., (2016). Exergy Analysis of a PWR Core Heat Transfer, 34(2), S465-S471. International Journal of Heat and Technology, Vol. 34, October 2016, pp. S465-S471.
Ghannadzadeh, A., Thery-Hetreux, R., Baudouinc, O., Joilia, X., (2012). General methodology for exergy balance in ProSimPlus® process simulator. Energy, 44, 38-59.
Grace, J. R., Li, X., Lim, C. J., (2001). Equilibrium modelling of catalytic steam reforming of methane in membrane reactors with oxygen addition. Catalysis Today, 64(3), 141-149.
Gregory, E.J., (1984). Patent on “Plate fin heat exchanger”.
Hussain, M.M., Baschuk, J.J., Li, X., Dincer, I., (2005). Thermodynamic analysis of a PEM fuel cell power system. Int. J. Thermal Science, 44, 903-911.
Hoang, D., Chan, S., & Ding, O., (2005). Kinetic modelling of partial oxidation of methane in an oxygen permeable membrane reactor. Chemical Engineering Research and Design, 83(2), 177-186.
Han, J., Kim, I.s., Choi, K.S., (2000). Purifier-integrated methanol reformer for fuel cell vehicles. Journal of Power Sources, 86(1), 223-227.
Hinderink, A, P., Kerkhof, F, P, J, M., Lie, A, B, K., Arons, D, S., & Kooi, H, J, V., (1996). Exergy analysis with a flowsheeting simulator-I. Theory; calculating exergies of material streams/ Chemical Engineering Science, 51(20), 4693-4700.
Hou, K., Hughes, R. (2003). Preparation of thin and highly stable Pd/Ag composite membranes and simulative analysis of transfer resistance for hydrogen separation. Journal of Membrane Science, 214(1), 43-55.
Hermann W. A., (2006). Quantifying global exergy resources, Energy, 31, 1685-1702.
Ishihara, A., Mitsushima, S., Kamiyab, N., Ota, K.I., (2004). Exergy analysis of polymer electrolyte fuel cell systems using methanol, 126(1-2), 34-40.
Iulianelli, A., Ribeirinha, P., Mendes, A., Basile, A., (2014). Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review. Renewable & Sustainable Energy Reviews, 29, 355-368.
Kang, I., Bae, J., Bae, G., (2006). Performance comparison of autothermal reforming for liquid hydrocarbons, gasoline and diesel for fuel cell applications. J. Power Sources 163, 538-46.
KOTAS, T. J. 'Exergy concepts for thermal plant' (First of two papers on exergy techniques in thermal plant analysis), Int. J. Heat and Fluid Flow 1980, 2, 105-114
Lattner, J. R., and Harold, M. P., (2004). Comparison of conventional and membrane reactor fuel processors for hydrocarbon-based PEM fuel cell systems. International Journal of Hydrogen Energy, 29(4), 393-417.
Lindström, B., Agrell, J., Pettersson, L. J., (2003). Combined methanol reforming for hydrogen generation over monolithic catalysts. Chemical engineering journal, 93(1), 91-101.
Li, A., Liang, W., Hughes, R., (2000). The effect of carbon monoxide and steam on the hydrogen permeability of a Pd/stainless steel membrane. Journal of Membrane Science, 165(1), 135-141.
Lee, H. C., Kim, D. H., (2008). Kinetics of CO and H 2 oxidation over CuO-CeO2 catalyst in H2 mixtures with CO2 and H2O. Catalysis Today, 132(1), 109-116.
Martínez A.A., Hungría, A., Munuera, G., Gamarra, D., (2006). Preferential oxidation of CO in rich H2 over CuO/CeO2: details of selectivity and deactivation under the reactant stream. Applied Catalysis B: Environmental, 65(3), 207-216.
Matsumura, Y., Nakamori, T., (2004). Steam reforming of methane over nickel catalysts at low reaction temperature. Applied Catalysis A: General, 258(1), 107-114.
Mohan, K., & Govind, R., (1988). Effect of temperature on equilibrium shift in reactors with a perm selective wall. Industrial & Engineering Chemistry Research, 27(11), 2064-2070.
Moran, m, J., Enrico, S., (1994). Exergy Analysis: Principles and Practice. Journal of Engineering for Gas Turbines and Power, 116(2), 285-290.
McCabe, W. L., Smith, J. C., & Harriott, P. (1993). Unit operations of chemical engineering (Vol. 5): McGraw-Hill New York.
Nuñez, M.P., Polley, G.T., Reyes, E.T., Muñoz, A.G., (1999). Surface selection and design of plate–fin heat exchangers, 19(9), 917-931.
Nicoletti G., Arcuri N., Bruno R., Nicoletti G., (2016). On the generalized concept of entropy for physical, extra physical and chemical processes,” International Journal of Heat and Technology, vol. 34 (Special issue 1), S21-S28.
Ouzounidou, M., Dimitrios, I., Voutetakis, S., Papadopoulou, S., Seferlis, P., (2008). A pilot plant for hydrogen production via methanol reforming for power generation in a PEM fuel cell. CHISA- 18th International Congress of Chemical and Process Engineering.
Ouzounidou, M., Ipsakis, D., Voutetakis, S., Papadopoulou, S., Seferlis, P., (2009). A combined methanol autothermal steam reforming and PEM fuel cell pilot plant unit: Experimental and simulation studies. Energy, 34(10), 1733-1743.
Rabbani, R. A., & Rokni, M. (2012). Dynamic Simulation of a Proton Exchange Membrane Fuel Cell System for Automotive Applications. In Proceedings of SEEP2012 (pp. 311-316).
Roa, F., Block, M. J., & Way, J. D., (2002). The influence of alloy composition on the H(2)flux of composite Pd-Cu membranes. Desalination, 147(1-3), 411-416.
Rodríguez, P.J.M., et al., (2010). The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signaling pathways interplay: a yeast dialogue between MAPK routes, Yeast 27(8), 495-502.
Sorin, M., Lambert, J., Paris, J., (1998). Exergy flows analysis in chemical reactors, 76(3), 389-395.
Szargut, J., Morris, D. and Stewart, F., (1988). Exergy Analysis of Thermal, Chemical and Metallurgical Processes, Hemisphere Publication Co, NY.
Tartakovsky, L., Baibikov, V., Veinblat, M., (2014). Modeling Methanol Steam Reforming for Internal Combustion Engine. Energy and Power, 4(1A), 50-56.
Tsatsaronis, G., Lin, L., & Pisa, J., (1993). Exergy costing in exergoeconomics. Energy Resour, 115(1), 9-16.
Uemiya, S., Sato, N., Ando, H., & Kikuchi, E., (1991). The water gas shift reaction assisted by a palladium membrane reactor. Industrial & Engineering Chemistry Research, 30(3), 585-589.
Wu, W., Lin, M.H., Chen, W.H., (2015). Exergy analysis of an EFC/PV/Battery-based hybrid
power generation system. International Journal of Energy Research, 39, 406-417.
Wu, W., Yang, S.B., Hwang, J.J., Zhou, X., (2018). Design, modeling, and optimization of a lightweight MeOH-to-H2 processor, International Journal of Hydrogen Energy, 43(31), 14451-14465.
Xomeritakis, G., Lin, Y., (1996). Fabrication of a thin palladium membrane supported in a porous ceramic substrate by chemical vapor deposition. Journal of Membrane Science, 120(2), 261-272.
Xomeritakis, G., Lin, Y. (1997). Fabrication of thin metallic membranes by MOCVD and sputtering. Journal of Membrane Science, 133(2), 217-230.
Zisopoulos, F, K., Goot, A.J.V., Boom, R.M., (2018). Exergy destruction in ammonia scrubbers. Resources, Conservation and Recycling, 136, 153-165.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-01-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-01-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw