進階搜尋


下載電子全文  
系統識別號 U0026-2901201911453900
論文名稱(中文) 過氧化氫在紫外光系統下對團聚微囊藻細胞之破壞及其毒素釋出降解之研究
論文名稱(英文) Impact of Hydrogen Peroxide and UV Light on the Cell Integrity and Toxin Release and Degradation of Colonial Microcystis
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 107
學期 1
出版年 108
研究生(中文) 張雨晴
研究生(英文) Yuqing Zhang
學號 P56053020
學位類別 碩士
語文別 中文
論文頁數 91頁
口試委員 指導教授-林財富
口試委員-黃良銘
口試委員-葉宣顯
口試委員-王根樹
中文關鍵字 過氧化氫  氫氧自由基  紫外光  團聚微囊藻  微囊藻毒素 
英文關鍵字 Hydrogen peroxide  Hydroxyl radical  ultraviolet light  colonial Microcystis  Microcystins 
學科別分類
中文摘要 本研究主要探討團聚微囊藻在紫外光系統下受到過氧化氫(H2O2)氧化後,細胞破損程度與胞內藻毒釋出之相關性,以及氫氧自由基(hydroxyl radical, ·OH)產量與藻毒素降解之關聯。實驗以自然水體可分離的三種不同粒徑之團聚微囊藻為研究對象,研究了在0.2 μm過濾之成功湖水背景條件下,細胞的破壞動力以及藻毒的降解動力。其中微囊藻細胞被破壞的程度,以細胞完整性來表示,通過萤光染劑搭配流式細胞儀進行分析,並以數藻輔助判定;藻毒應用酵素連結免疫吸附法進行分析。研究對象經實驗證實,具有產高濃度藻毒素的能力。
研究結果發現,微囊藻對於紫外光系統下H2O2之抗氧化力與細胞團聚粒徑之大小有關,越大粒徑的團聚微囊藻其抗氧化能力越強。並且推測·OH是造成H2O2/UV系統中細胞破裂速率比UV系統中要大之主要原因。在毒素方面,氧化造成的細胞破壞會導致胞內毒素的釋出,因此觀察到胞外毒素的上升,然而反應系統中產生的氫氧自由基對藻毒具有較強氧化性,因此觀察到隨著時間的增加總毒素有所下降。經過動力模擬後發現,單顆粒之同種微囊藻和37~297 μm之團聚微囊藻都能符合Delayed Chick-Watson model,然而297~840 μm粒徑之團聚微囊藻,卻可依據細胞破裂常數之不同,分為三個階段模擬,說明297~840 μm粒徑之團聚微囊藻不能以一般動力模式模擬。
本研究表明,微囊藻的形態會影響氧化過程對其細胞的破壞、胞內代謝物的釋出和降解過程。在實際原水處理過程中,添加H2O2劑量以及採用的紫外光強度,還應考慮藻的團聚程度影響。
英文摘要 The main purpose of this study was to investigate the relationships between cell damage and intracellular microcystins released for colonial Microcystis after being oxidized by hydrogen peroxide (H2O2) under ultraviolet (UV) light condition, and effect of hydroxyl radical (·OH) on microcystins degradation. In the oxidation experiments, the colonial Microcystis were divided into three size ranges and were oxidized in filtrated water from Renyitan (RET) Reservoir. The results showed that the rates of cell ruptured by the oxidation process, and the release and degradation of intracellular metabolites were depending on colonial sizes, with smaller rates for larger colonies. In the treatment process of natural and engineered water systems, the H2O2 dosages and ultraviolet light intensity applied should be based on the sizes of colonies present in the water.
論文目次 目錄
摘要 I
Extended Abstract II
誌謝 V
目錄 VII
圖目录 X
表目錄 XIII
第一章 緒論 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 微囊藻的特性 3
2-1-1 單顆粒微囊藻與團聚微囊藻之比較 3
2-1-2 團聚形成之影響因素 5
2-1-3 團聚藻氧化研究之局限 6
2-2 微囊藻之處理方法 7
2-2-1 傳統方法 7
2-2-2 高級氧化技術(AOPs) 8
2-2-3 氧化作用對藻體破壞之影響因子 11
2-3 微囊藻毒素及其處理方法 12
2-2-1 微囊藻毒素 12
2-3-2 微囊藻毒素之去除 15
2-3-3 H2O2/UV的應用 16
2-3 氫氧自由基的量測 18
2-3-1 化學探針法(Chemical Probe Method) 18
2-3-2 氫氧自由基濃度推算 19
2-4 螢光染色應用於藻體之觀察 20
2-4-1 螢光染劑 20
2-4-2 流式細胞儀 22
第三章 實驗設備與方法 23
3-1 研究架構 23
3-2 團聚微囊藻之準備 25
3-2-1 團聚微囊藻來源 25
3-2-2 團聚微囊藻之培養方法 25
3-2-3 團聚微囊藻之計數 27
3-2-4 團聚微囊藻之分散方法 29
3-2-5 團聚微囊藻之篩分方法 30
3-3 氧化實驗 31
3-4 化學探針分析 33
3-5 過氧化氫濃度分析 35
3-6 团聚细胞完整性分析 37
3-7 微囊藻毒素分析 39
第四章 結果與討論 43
4-1 光源特性測試 43
4-1-1 光源譜圖及強度測定 43
4-1-2 UV光強變化測試 45
4-2 過氧化氫及光源對細胞完整性之影響 47
4-2-1 過氧化氫對微囊藻細胞之影響 47
4-2-2 光源對微囊藻細胞之影響 51
4-3 團聚微囊藻之氧化結果 56
4-3-1 單顆粒微囊藻 56
4-3-2 粒徑介於37~297 μm之團聚微囊藻 59
4-3-3 粒徑介於297 ~840 μm之團聚微囊藻 66
4-4 不同系統之結果比較 68
4-4-1不同團聚粒徑結果之比較 68
4-4-2 UV光系統之比較 70
4-5 UV/H2O2系統之動力模擬 72
4-5-1 UV細胞完整性動力模式模擬 72
第五章 結論與建議 82
5-1 結論 82
5-2 建議 83
第六章 參考文獻 84

圖目录
圖2- 1發生藍綠菌毒素問題之天然水體分佈(Zurawell et al. 2005) 12
圖2- 2微囊藻毒素之化學結構(Hummert et al. 2001) 13
圖2- 3細胞於流式細胞儀中經雷射光照射所產生之不同散射光 22

圖3- 1研究架構流程圖 24
圖3- 2團聚微囊藻培養照片 26
圖3- 3樣品注入計數盤之方法(Whipple et al. 1927) 28
圖3- 4 pCBA檢量線 34
圖3- 5 H2O2檢量線 36
圖3- 6細胞完整性配置與實驗值關係 38
圖3- 7 微囊藻毒檢量線 41

圖4- 1高壓汞燈圖譜 43
圖4- 2 紫外光源图谱 43
圖4- 3 UV光強變化測試圖 45
圖4- 4 H2O2/dark系統中H2O2濃度隨時間之變化 48
圖4- 5 H2O2/dark系統中H2O2濃度隨時間之變化 48
圖4- 6 H2O2/dark系統中細胞完整性隨時間之變化 49
圖4- 7 H2O2/dark系統中細胞完整性隨時間之變化 49
圖4- 8 H2O2/dark系統中pCBA濃度隨時間之變化 50
圖4- 9 H2O2/dark系統中pCBA濃度隨時間之變化 50
圖4- 10 H2O2/dark系統中藻毒濃度隨時間之變化 50
圖4- 11高壓汞燈系統中pCBA濃度隨時間之變化 52
圖4- 12 UV光系統中pCBA濃度隨時間之變化 52
圖4- 13 UV光系統中pCBA濃度隨時間之變化 53
圖4- 14光源系統中細胞完整性隨時間之變化 54
圖4- 15高壓汞燈系統中微囊藻毒濃度隨時間之變化 55
圖4- 16 H2O2/UV系統中H2O2濃度隨時間之變化 57
圖4- 17 H2O2/UV系統中H2O2濃度隨時間之變化 57
圖4- 18單顆粒微囊藻之H2O2/UV系統中pCBA濃度隨時間變化 58
圖4- 19單顆粒微囊藻之H2O2/UV系統中細胞完整性隨時間之變化 59
圖4- 20 37~297 μm團聚微囊藻之H2O2/UV系統中pCBA浓度随时间变化 60
圖4- 21 37~297 μm團聚微囊藻之H2O2/UV系統中細胞完整性隨時間之變化 61
圖4- 22 37~297 μm團聚微囊藻之H2O2/高壓汞燈系統中微囊藻毒濃度變化 62
圖4- 23 37~297 μm團聚微囊藻之H2O2/UV系統中微囊藻毒濃度隨時間之變化 63
圖4- 24 37~297 μm團聚微囊藻之H2O2/UV系統中微囊藻毒濃度隨時間之變化 64
圖4- 25 37~297 μm團聚微囊藻之H2O2/UV系統中微囊藻毒濃度隨時間之變化 65
圖4- 26 297~840 μm團聚微囊藻之H2O2/UV系統中pCBA浓度随时间变化 66
圖4- 27 297~840 μm團聚微囊藻之H2O2/UV系統中細胞完整性隨時間之變化 67
圖4- 28 H2O2/UV系統中不同團聚粒徑細胞完整性隨時間之變化 69
圖4- 29 H2O2/UV系統中不同團聚粒徑細胞完整性隨時間之變化 69
圖4- 30单颗粒同种微囊藻之H2O2/UV系統中細胞完整性隨時間之變化 70
圖4- 31 37~297 μm團聚微囊藻之H2O2/UV系統中細胞完整性隨時間之變化 71
圖4- 32 H2O2/UV系統中不同粒徑團聚微囊藻細胞完整性趨勢模擬 74
圖4- 33 H2O2/UV系統中不同粒徑團聚微囊藻細胞完整性趨勢模擬 75
圖4- 34顯微鏡量測團聚微囊藻粒徑示意圖 78
圖4- 35 顯微鏡量測團聚微囊藻粒徑分佈圖 79

表目錄

表2- 1去除水體藻類常見方法比較 8
表2- 2不同氧化劑對藍綠菌毒素之降解能力(Westrick et al. 2010) 10
表2- 3微囊藻毒素之主要形式(Hummert et al. 2001, Maizels et al. 2004) 13
表2- 4微囊藻毒素之LD50 毒性 (Hitzfeld et al. 2000) 14

表3- 1 ASM培養基成分表(Rippka 1988) 25

表4- 1本研究使用光源之強度(W/m2) 44
表4- 2 UV光強變化比較 46
表4- 3氫氧自由基產量及藻毒去除率 65
表4- 4實驗系統參數與偵測結果 71
表4- 5細胞完整性動力模式模擬 76
表4- 6團聚微囊藻粒徑變化之量測 78
參考文獻 Antoniou, M. G., A. A. de la Cruz and D. D. Dionysiou. Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e− transfer mechanisms. Applied Catalysis B: Environmental 96(3-4). 290-298. (2010)
Barrington, D. J. and A. Ghadouani. Application of hydrogen peroxide for the removal of toxic cyanobacteria and other phytoplankton from wastewater. Environmental science & technology 42(23). 8916-8921. (2008)
Barrington, D.J., Ghadouani, A. and Ivey, G.N. Environmental Factors and the Application of Hydrogen Peroxide for the Removal of Toxic Cyanobacteria from Waste Stabilization Ponds. Journal of Environmental Engineering 137(10). 952-960. (2011)
Barrion, G. and Feuillade, M. Hydrogen peroxide as a potential algicide for Oscillatoria rubescens DC. Water Research 20(5). 619-623. (1986)
Bin Alam, M.D.Z., Otaki, M., Furumai, H. and Ohgaki, S. Direct and indirect inactivation of Microcystis aeruginosa by UV-radiation. Water Research 35(4). 1008-1014. (2001)
Binet, M. and J. Stauber. Rapid flow cytometric method for the assessment of toxic dinoflagellate cyst viability. Marine environmental research 62(4). 247-260. (2006)
Bober, B., K. Pudas, Z. Lechowski and J. Bialczyk. Degradation of microcystin-LR by ozone in the presence of Fenton reagent. Journal Environmental Science Health A Toxinological Hazard Subst Environmental Eng 43(2). 186-190. (2008)
Bouchard, J.N., Roy, S. and Campbell, D.A. UVB effects on the photosystem Ⅱ-D1 protein of phytoplankton and natural phytoplankton communities. Photochemistry and Photobiology 82(4). 936-951. (2006)
Brezonik, P.L. and Fulkerson-Brekken, J. Nitrate-induced photolysis in natural waters: Controls on concentrations of hydroxyl radical photo-intermediates by natural scavenging agents. Environmental Science and Technology 32(19). 3004-3010. (1998)
Burkert U., Hyenstrand P., Drakare S. and Blomqvist, P.. Effects of the mixotrophic flagellate Ochromonas sp. on colony formation in Microcystis aeruginosa. Aquatic Ecology 35(1). 11-17 (2001)
Campbell, C., Quinn, A.G., Angus, b., Farr, P.M. and Rees, J.L. Wavelength specific patterns of p53 induction in human skin following exposure to UV radiation. Cancer research 53(12). 2697-2699. (1993)
Carey, J. An introduction to advanced oxidation processes (AOP) for destruction of organics in wastewater. (1992)
Chang, D.W., Hsieh, M.L., Chen, Y.M., Lin, T.F. and Chang, J.S. Kinetics of cell lysis for Microcystis aeruginosa and Nitzschia palea in the exposure to beta-cyclocitral. Journal of Hazardous Materials 185(2). 1214-1220. (2011)
Chang, S. C., C. H. Li, J. J. Lin, Y. H. Li and M. R. Lee. Effective removal of Microcystis aeruginosa and microcystin-LR using nanosilicate platelets. Chemosphere 99. 49-55. (2014)
Chang, C.W., Huo, X.C. and Lin, T.F. Exposure of Microcystis aeruginosa to hydrogen peroxide and titanium dioxide under visible light conditions: Modeling the impact of hydrogen peroxide and hydroxyl radical on cell rupture and microcystin degradation. Water Research 141. 217-226. (2018)
Chen, J.-J. and H.-H. Yeh. The mechanisms of potassium permanganate on algae removal. Water Research 39(18). 4420-4428. (2005)
Chick, H. An investigation of the laws of disinfection. Journal of Hygiene 8(01). 92-158. (1908)
Cho, M., H. Chung, W. Choi and J. Yoon. Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Research 38(4). 1069-1077. (2004)
Cho, M., H. Chung and J. Yoon. Disinfection of Water Containing Natural Organic Matter by Using Ozone-Initiated Radical Reactions. Applied and Environmental Microbiology 69(4). 2284-2291. (2003)
Chow, C. W., M. Drikas, J. House, M. D. Burch and R. M. Velzeboer. The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa. Water Research 33(15). 3253-3262. (1999)
Codd, G., S. Bell, K. Kaya, C. Ward, K. Beattie and J. Metcalf. Cyanobacterial toxins, exposure routes and human health. European Journal of Phycology 34(4). 405-415. (1999)
Daly, R. I., L. Ho and J. D. Brookes.Effect of Chlorination on Microcystis aeruginosa Cell Integrity and Subsequent Microcystin Release and Degradation. Environmental Science & Technology 41(12). 4447-4453. (2007)
Del Giorgio, P. A., Y. Prairie and D. Bird. Coupling between rates of bacterial production and the abundance of metabolically active bacteria in lakes, enumerated using CTC reduction and flow cytometry. Microbial ecology 34(2). 144-154. (1997)
Diaper, J., K. Tither and C. Edwards. Rapid assessment of bacterial viability by flow cytometry. Applied Microbiology and Biotechnology 38(2). 268-272. (1992)
Dillon, J.G., Tatsumi, C.M., Tandingan, P.G. and Castenholz, R.W. Effect of environmental factors on the synthesis of scytonemin, a UV-screening pigment, in a cyanobacterium (Chroococcidiopsis sp.). Archives of Microbiology 177(4). 322-331. (2002)
Ding, J., H. Shi, T. Timmons and C. Adams. Release and removal of microcystins from microcystis during oxidative-, physical-, and UV-based disinfection. Journal of Environmental Engineering 136(1). 2-11. (2010)
Dorsey, J., C. M. Yentsch, S. Mayo and C. McKenna. Rapid analytical technique for the assessment of cell metabolic activity in marine microalgae. Cytometry Part A 10(5). 622-628. (1989)
Ehling-Schulz, M., Bilger, W. and Scherer, S. UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. Journal of Bacteriology 176(6). 1940-1945. (1997)
Ehling-Schulz, M. and Scherer, S. UV protection in cyanobacteria. European Journal of Phycology 34(4). 329-338. (1999)
Elovitz, M. S. and U. von Gunten. Hydroxyl Radical/Ozone Ratios During Ozonation Processes. I. The RctConcept. Ozone: Science & Engineering 21(3). 239-260. (1999)
Fan, J., L. Ho, P. Hobson and J. Brookes. Evaluating the effectiveness of copper sulphate, chlorine, potassium permanganate, hydrogen peroxide and ozone on cyanobacterial cell integrity. Water Research 47(14). 5153-5164. (2013)
Fan, J., L. Rao, Y. T. Chiu and T. F. Lin. Impact of chlorine on the cell integrity and toxin release and degradation of colonial Microcystis. Water Research 102. 394-404. (2016)
Gan, N.Q., Xiao, Y., Zhu, L., Wu, Z.X., Liu, J., Hu, C.L., Song, L.R. The role of microcystins in maintaining colonies of bloom-forming Microcystis spp. Environmental Microbiology 14(3). 730-742. (2012)
Haji, S., Benstaali, B. and Al-Bastaki, N. Degradation of methyl orange by UV/H2O2 advanced oxidation process. Chemical Engineering Journal 168(1). 134-139. (2011)
Haugland, R. P.. Handbook of Fluorescent Probes and Research Products. Molecular Probes Eugene, OR. (1996)
He, Y.Y. and Hader, D.P. UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and N-acetyl-L-cysteine. Journal of Photochemistry and Photobiology B-Biology 66(2). 115-124. (2002)
Hitzfeld, B. C., S. J. Höger and D. R. Dietrich. Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment. Environmental Health Perspectives 108(Suppl 1). 113-122. (2000)
Hobbie, J. E., R. J. Daley and S. Jasper. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Applied and environmental microbiology 33(5). 1225-1228. (1977)
Huber, M. M., S. Canonica, G.-Y. Park and U. von Gunten. Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes. Environmental Science & Technology 37(5).1016-1024. (2003)
Hummert, C., J. Dahlmann, M. Reichelt and B. Luckas. Analytical techniques for monitoring harmful cyanobacteria in lakes. Lakes and Reservoirs: Research and Management 6(2). 159-168. (2001)
Huo, X., D.-W. Chang, J.-H. Tseng, M. D. Burch and T.-F. Lin. Exposure of Microcystis aeruginosa to Hydrogen Peroxide under Light: Kinetic Modeling of Cell Rupture and Simultaneous Microcystin Degradation. Environmental Science and Technology 49(9). 5502-5510. (2015)
Huo, X., D. W. Chang, J. H. Tseng, M. D. Burch and T. F. Lin. Exposure of Microcystis aeruginosa to Hydrogen Peroxide under Light: Kinetic Modeling of Cell Rupture and Simultaneous Microcystin Degradation. Environmental Science Technology 49(9). 5502-5510. (2015)
Jancula, D. and B. Marsalek. Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms. Chemosphere 85(9). 1415-1422. (2011)
Jo, C.H., Dietrich, A.M. and Tanko, J.M. Simultaneous degradation of disinfection byproducts and earthy-musty odorants by the UV/H2O2 advanced oxidation process. Water Research 45(8). 2507-2516. (2011)
Jones, K. H. and J. A. Senft. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. Journal of Histochemistry & Cytochemistry 33(1). 77-79. (1985)
Joung, S.H., Kim, C.J., Ahn, C.Y., Jang, K.Y., Boo, S.M. and Oh, H.M. Simple method for a cell count of the colonial cyanobacterium, Microcystis sp. Journal of Microbiology Seoul. 44(5). 562-565. (2006)
Kansole, M. M. and T.-F. Lin . Impacts of Hydrogen Peroxide and Copper Sulfate on the Control of Microcystis aeruginosa and MC-LR and the Inhibition of MC-LR Degrading Bacterium Bacillus sp. Water 9(4). 255. (2017)
Kay, S.H., Quimby, P.C. and Jr.Ouzts, J.D. A potential algicide for aquaculture Hydrogen peroxide for use in commercial catfish ponds, Anabaena sp, toxicity. Southern Weed Science Society. (1982)
Komárková, Jaroslava; Šimek, Karel. Unicellular and colonial formations of picoplanktonic cyanobacteria under variable environmental conditions and predation pressure. Algological Studies 109(1). 327-340. (2003)
Kwan, W. P. and B. M. Voelker. Rates of Hydroxyl Radical Generation and Organic Compound Oxidation in Mineral-Catalyzed Fenton-like Systems. Environmental Science & Technology 37(6). 1150-1158. (2003)
Latifi, A., Ruiz, M. and Zhang, C.C. Oxidative stress in cyanobacteria. FEMS microbiology reviews 33(2). 258-278. (2009)
Lee, S.-Y. and S.-J. Park. TiO2 photocatalyst for water treatment applications. Journal of Industrial and Engineering Chemistry 19(6). 1761-1769. (2013)
Lei, P., F. Wang, X. Gao, Y. Ding, S. Zhang, J. Zhao, S. Liu and M. Yang. Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants. Journal of Hazard Mater 227-228. 185-194. (2012)
Li, L., C. Shao, T. F. Lin, J. Shen, S. Yu, R. Shang, D. Yin, K. Zhang and N. Gao. Kinetics of cell inactivation, toxin release, and degradation during permanganation of Microcystis aeruginosa. Environmental Science and Technology 48(5). 2885-2892. (2014)
Li, X., H. Zhu, J. Wei, K. Wang, E. Xu, Z. Li and D. Wu. Determination of band gaps of self-assembled carbon nanotube films using Tauc/Davis–Mott model. Applied Physics A: Materials Science & Processing 97(2). 341-344. (2009)
Liang, C. and H.-W. Su. Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Industrial and Engineering Chemistry Research 48(11). 5558-5562. (2009)
Liang, H. C., X. Z. Li, Y. H. Yang and K. H. Sze. Effects of dissolved oxygen, pH, and anions on the 2,3-dichlorophenol degradation by photocatalytic reaction with anodic TiO(2) nanotube films. Chemosphere 73(5). 805-812. (2008)
Lin, T.-F., D.-W. Chang, S.-K. Lien, Y.-S. Tseng, Y.-T. Chiu and Y.-S. Wang. Effect of chlorination on the cell integrity of two noxious cyanobacteria and their releases of odorants. Journal of Water Supply: Research and Technology—AQUA 58(8). 539. (2009)
Liu, Y., J. Ren, X. Wang and Z. Fan. Mechanism and Reaction Pathways for Microcystin-LR Degradation through UV/H2O2 Treatment. PLoS One 11(6). e0156236. (2016)
Ma, M., R. Liu, H. Liu and J. Qu. Chlorination of Microcystis aeruginosa suspension: Cell lysis, toxin release and degradation. Journal of Hazardous Materials 217. 279-285. (2012)
Maizels, M. and W. L. Budde. A LC/MS Method for the Determination of Cyanobacteria Toxins in Water. Analytical Chemistry 76(5).1342-1351. (2004)
Mali, S. S., H. Kim, C. S. Shim, P. S. Patil, J. H. Kim and C. K. Hong. Marie, D., D. Vaulot and F. Partensky. Application of the novel nucleic acid dyes YOYO-1, YO-PRO-1, and PicoGreen for flow cytometric analysis of marine prokaryotes. Applied and environmental microbiology 62(5). 1649-1655. (1996)
Marwood, C.A., Smith, R.E.H., Furgal, J.A., Charlton, M.N., Solomon, K.R. and Greenberg, B.M. Photoinhibition of natural phytoplankton assemblages in Lake Erie exposed to solar ultraviolet radiation . Canadian Journal of Fisheries and Aquatic Sciences 57(2). 371-379. (2000)
Matthijs, H.C.P., Visser, P.M., Reeze, B., Meeuse, J., Slot, P.C., Wijn, G., Talens, R. and Huisman, J. Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water research 46(5). 1460-1472. (2012)
Moffat, B. D. and T. W. Snell. Rapid toxicity assessment using an in vivo enzyme test for Brachionus plicatilis (Rotifera). Ecotoxicology and Environmental Safety 30(1). 47-53. (1995)
Oliver, R.L. Floating and sinking in gas-vacuolate cyanobacteria. Journal of phycology 30(2). 161-173. (1994)
O’Shea, K. E. and D. D. Dionysiou. Advanced oxidation processes for water treatment. ACS Publications. (2012)
Otsuka, S., Suda, S., Li, R.H., Matsumoto, S. and Watanabe, M.M. Morphological variability of colonies of Microcystis morphospecies in culture. The Journal of General and Applied Microbiology 46(1). 39-50. (2000)
Qiao, R.-P., N. Li, X.-H. Qi, Q.-S. Wang and Y.-Y. Zhuang. Degradation of microcystin-RR by UV radiation in the presence of hydrogen peroxide. Toxicon 45(6). 745-752. (2005)
Pryor, W. A.. Oxy-radicals and related species: their formation, lifetimes, and reactions. Annual review of Physiology 48(1). 657-667. (1986)
Rashash, D. M. and D. L. Gallagher. An evaluation of algal enumeration. Journal-American Water Works Association 87(4). 127-132. (1995)
Rattanakul, S. and K. Oguma. Analysis of Hydroxyl Radicals and Inactivation Mechanisms of Bacteriophage MS2 in Response to a Simultaneous Application of UV and Chlorine. Environmental Science Technology 51(1). 455-462. (2017)
Ramirez, A.M. and De Belie, N. Evaluation of the algaecide activity of titanium dioxide on autoclaved aerated concrete. Journal of Advanced Oxidation Technologies 12(1). 100-104. (2009)
Reynold, C.S. and Jawlorski, G.H.M. Enumeration of natural Microcystis populations. British Phycological Journal 13(3). 269-277. (1978)
Ruppert, G., R. Bauer and G. Heisler. UV-O3, UV-H2O2, UV-TiO2 and the photo-Fenton reaction-comparison of advanced oxidation processes for wastewater treatment. Chemosphere 28(8). 1447-1454. (1994)
Sakai, H.,Oguma, K., Katayama, H. and Ohgaki, S. Effects of low- or medium-pressure ultraviolet lamp irradiation on Microcystis aeruginosa and Anabaena variabilis. Water Research 41(1). 11-18. (2007)
Samuilov, V.D., Bezryadnov, D.V., Gusev, M.V., Kitashov, A.V. and Fedorenko, T.A. Hydrogen peroxide inhibits the growth of cyanobacteria. Biochemistry (Moscow) 64(1). 47-53. (1999)
Samuilov, V.D., Timofeev, K.N., Sinitsyn, S.V. and Bezryadnov, D.V. H2O2-induced inhibition of photosynthetic O-2 evolution by Anabaena variabilis cells. Biochemistry (Moscow) 69(8). 926-933. (2004)
Sellers, R. M.. Spectrophotometric determination of hydrogen peroxide using potassium titanium (IV) oxalate. Analyst 105(1255). 950-954. (1980)
Sen, C., L. Packer and O. Hänninen. Handbook of oxidants and antioxidants in exercise. Elsevier. (2000)
Sharma, V. K., T. M. Triantis, M. G. Antoniou, X. He, M. Pelaez, C. Han, W. Song, K. E. O’Shea, A. A. de la Cruz, T. Kaloudis, A. Hiskia and D. D. Dionysiou. Destruction of microcystins by conventional and advanced oxidation processes: A review. Separation and Purification Technology 91. 3-17. (2012)
Shen, H. and Song, L.R. Comparative studies on physiological responses to phosphorus in two phenotypes of bloom-forming Microcystis. Hydrobiologia 592(1). 475-486. (2007)
Sivaganesan, M., Adcock, N.J. and Rice, E.W. Inactivation of Bacillus globigii by chlorination: A hierarchical Bayesian model. Journal of Water Supply: Research and Technology AQUA 55(1). 34-33. (2006)
Smith, V.H., Tilman, G.D. and Nekola, J.C. Eutrophication : impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100(1-3). 179-196. (1999)
Teixeira, M.R. and Rosa, M.J. Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa Part 1: The key operating conditions. Separation and Purification Technology 52(1). 84-94. (2006)
Triantis, T. M., T. Fotiou, T. Kaloudis, A. G. Kontos, P. Falaras, D. D. Dionysiou, M. Pelaez and A. Hiskia. Photocatalytic degradation and mineralization of microcystin-LR under UV-A, solar and visible light using nanostructured nitrogen doped TiO2. J Hazard Mater 211-212. 196-202. (2012)
Unluturk, S., Atilgan, M.R., Baysal, A.H. and Unluturk, M.S. Modeling inactivation kinetics of liquid egg white exposed to UV-C irradiation. International Journal of Food Microbiology 142(3). 341-347. (2010)
Van Apeldoorn, M. E., H. P. van Egmond, G. J. Speijers and G. J. Bakker. Toxins of cyanobacteria. Mol Nutr Food Res 51(1). 7-60. (2007)
Vasconcelos, V., K. Sivonen, W. Evans, W. Carmichael and M. Namikoshi. Hepatotoxic microcystin diversity in cyanobacterial blooms collected in Portuguese freshwaters. Water Research 30(10). 2377-2384. (1996)
Vilhunen, S., Puton, J., Virkutyte, J. and Sillanpaa, M. Efficiency of hydroxyl radical formation and phenol decomposition using UV light emitting diodes and H2O2. Environmental Technology 32(8). 865-872. (2011)
Wang, G.S., Hsieh, S.T. and Hong, CS. Destruction of humic acid in water by UV light - Catalyzed oxidation with hydrogen peroxide. Water Research 34(15). 3882-3887. (2000)
Wang, X., X. Wang, J. Zhao, J. Song, J. Wang, R. Ma and J. Ma. Solar light-driven photocatalytic destruction of cyanobacteria by F-Ce-TiO 2 /expanded perlite floating composites. Chemical Engineering Journal 320. 253-263. (2017)
Wang, Y., L. Zhang, K. Deng, X. Chen and Z. Zou. Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructures. The Journal of Physical Chemistry C 111(6). 2709-2714. (2007)
Watson, H. E.. A note on the variation of the rate of disinfection with change in the concentration of the disinfectant. Journal of Hygiene 8(4). 536-542. (1908)
Wert, E. C., M. M. Dong and F. L. Rosario-Ortiz. Using digital flow cytometry to assess the degradation of three cyanobacteria species after oxidation processes. Water Research 47(11). 3752-3761. (2013)
Westrick, J. A., D. C. Szlag, B. J. Southwell and J. Sinclair. A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment. Anal Bioanal Chem 397(5). 1705-1714. (2010)
Whitton, B. and Potts, M. Ecology of Cyanobacteria Ⅱ. Whitton, B.A., 1-13, Springer Netherlands. (2012)
Wormer, L., Huerta-Fontela, M., Cires, S., Carrasco, D. and Quesada, A. Natural Photodegradation of the Cyanobacterial Toxins Microcystin and Cylindrospermopsin. Environmental Science and Technology 44(8). 3002-3007. (2010)
Wu, Z.X., and Song, L.R. Physiological comparison between colonial and unicellular forms of Microcystis aeruginosa Kutz. (Cyanobacteria). Phycologia 47(1). 98-104. (2008)
Yang, Z. and Kong, F.X. Formation of large colonies: a defense mechanism of Microcystis aeruginosa under continuous grazing pressure by flagellate Ochromonas sp. Journal of limnology 71(1). 61-66. (2012)
Zamyadi, A., Y. Fan, R. I. Daly and M. Prevost. Chlorination of Microcystis aeruginosa: toxin release and oxidation, cellular chlorine demand and disinfection by-products formation. Water Research 47(3). 1080-1090. (2013)
Zhang, M., Kong, F.X., Tan, X., Yang, Z., Cao, H.S., Xing, P. Biochemical, morphological, and genetic variations in Microcystis aeruginosa due to colony disaggregation. World Journal of Microbiology and Biotechnology 23(5). 663-670. (2007)
Zohary, T. and Madrira, A.M.P. Counting natural populations of Microcystis Aeruginosa: A simple method for colony disruption into single cells and its effect on cell counts of other species. Journal of the Limnological Society of Southern Africa 13(2). 75-77. (1987)
Zurawell, R. W., H. Chen, J. M. Burke and E. E. Prepas. Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. Journal Toxicology and Environmental Health B 8(1). 1-37. (2005)

張哲維. 過氧化氫與二氧化鈦在可見光催化系統下對微囊藻之破壞及其毒素釋出降解之研究, 成功大學. (2015)
游惇蓉. 過氧化氫在光催化系統下對魚腥藻之破壞及其代謝物釋出降解之研究, 成功大學. (2014)
黃暐庭. 二氧化鈦搭配過氧化氫在UV-LED系統下對微囊藻細胞及毒素破壞之研究, 成功大學. (2016)
董俊興. 經摻雜之二氧化鈦觸媒膜光分解性質之研究, 國立中央大學圖書館. (2001)
饒拉. 氯對團聚微囊藻細胞破壞及其代謝物釋出及降解之研究, 成功大學. (2016)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-01-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-01-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw