進階搜尋


 
系統識別號 U0026-2901201615314400
論文名稱(中文) 多相機攝影系統影像拼接之精度分析
論文名稱(英文) Accuracy Analysis of A Multi-Camera Imaging System after Image Mosaicking
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 104
學期 1
出版年 105
研究生(中文) 李易唐
研究生(英文) Yi-Tang Li
學號 P66021075
學位類別 碩士
語文別 中文
論文頁數 84頁
口試委員 指導教授-饒見有
口試委員-趙鍵哲
口試委員-曾義星
中文關鍵字 無人機  多相機攝影系統  製圖  精度分析  直接地理定位 
英文關鍵字 UAS  Accuracy Analysis  Multi-camera Imaging System  Mapping  Direct Geo-referencing 
學科別分類
中文摘要 近年來無人飛行載具系統(Unmanned Aerial System, UAS)經常使用在航測相關應用與研究,但受到載重與空間的限制,通常僅能搭載單台小像幅相機,而由於小像幅相機的視場角較小,因此須透過多條航帶來涵蓋測試區,與大像幅的專業型量測相機相比,小像幅相機的資料蒐集效率較差、影像數量較多而造成空三平差複雜度提高,更會因為FOV小而導致高程定位精度較差,除此之外,由於小像幅相機的影像尺寸較小,在立製過程中需要經常性的更換立體對才能進行測繪。為了能夠快速取得大面積地面範圍的資料蒐集,本研究中提出利用高酬載定翼型無人機搭載五相機攝影系統,五相機攝影系統包含了五台小像幅相機,並有分別有-50、-30、0、30、50的相對傾斜視角,整體FOV能提高至約120度。接著利用本研究中所提出的影像拼接流程,首先以室內率定得到相機內方位與相對方位參數,並以模擬單一透視中心進行透視投影轉換至一虛擬平面上,並分析相鄰相機重疊區的殘差,接著消除該誤差以達到更好的拼接影像成果。接著透過空三平差程序分析拼接成果,觀察其控制點與檢核點的RMSE,在平面方向約小於10公分,高程方向小於20公分。另外為了不同用途的應用,在影像外方位的求解不僅可透過空三平差程序,直接地理定位亦是一種方法,因此在無人機上搭載POS系統並進行系統率定後,進行直接地理定位解算。最後利用影像工作站檢測經過空三平差的影像拼接成果於製圖的精度,其成果顯示平面方向誤差小於10公分,而高程方向則小於15公分,此成果應能滿足千分之一航測地形圖繪製規範。另一方面以前方交會分析透過直接地理定位求得的影像外方位之定位能力,最後顯示影像拼接成果於直接地理定位於平面方向誤差小於2.5公尺,高程方向誤差則小於4公尺,此成果應能滿足災害調查等應用。
英文摘要 Generally, UAS only can carry one format camera for mapping application due to the limitation of the payload and space. In this study, a multi-camera imaging system including five DSLR cameras with different view angles was proposed for the mapping application, and it was mounted on a high payload fix-wing UAS. Whereas for topographic mapping purpose, the images acquired in a single shot need to be mosaicked as one virtual image, thus the total number of images and unknowns in aerial triangulation can be reduced. An image mosaicking method proposed in the study is a modified projective transformation (MPT) model, where the initial transformation coefficients were estimated from an indoor calibration procedure and were further improved by a series of systematic error correction. In the experiment, the accuracy analyses were estimated through the misregistration residuals, rigorous aerial triangulation, and stereo plotting 3D positioning. Preliminary experimental result shows that the internal accuracy (average length of misregistration residuals) of the mosaicked images is better than 1 pixels. Comparisons among different cameras combinations, five cameras mosaicked image were conducted through rigorous aerial triangulation. It shows the three cameras mosaicked images could reach the mapping accuracy of 1/1000 topographic standard where the five cameras mosaicked image is more suitable for collecting larger ground coverage area for rapidly disaster investigation.
論文目次 第1章. 前言 1
1.1. 研究背景 1
1.2. 資料蒐集方法之比較 1
1.3. 研究目的與研究動機 4
第2章. 文獻回顧 6
2.1. 無人飛機系統(Unmanned Aircraft System, UAS) 6
2.2. 直接地理定位(Direct Geo-referencing, DG) 7
2.3. 多相機攝影系統 9
2.3.1. 大像幅攝影系統 9
2.3.2. 垂直與傾斜攝影系統 9
2.3.3. 多光譜攝影系統 10
第3章. 儀器設備與測試區 13
3.1. 五相機攝影系統 13
3.2. 無人飛機系統(UAS) 16
3.2.1. 整合式定位定向系統(GPS/IMU) 17
3.2.2. 影像拍攝控制器(Automatic Image Capture System, AICS) 18
3.2.3. 飛行控制電腦 19
3.3. 實驗測試區 19
第4章. 研究方法 21
4.1. 研究流程圖 21
4.2. 系統率定 22
4.2.1. 五相機攝影系統內方位率定 22
4.2.2. 五相機攝影系統相對方位率定 24
4.3. 直接地理定位(Direct Geo-referencing, DG)率定 25
4.4. 多影像拼接 27
4.4.1. 透視投影轉換(Projetive Transformation) 28
4.4.2. 影像拼接殘差分析 31
4.4.3. 系統誤差修正 33
4.4.4. 拼接影像色彩調和 34
4.4.5. 空中三角測量 34
4.5. 立體量測檢核製圖精度與前方交會 35
第5章. 研究成果 38
5.1. 五相機攝影系統率定成果 38
5.1.1. 相機內方位率定成果 38
5.1.2. 相機相對方位率定成果 39
5.2. 多影像拼接 40
5.2.1 影像拼接殘差分析與系統誤差修正 40
5.2.2 誤差模擬分析 45
5.2.3 拼接影像成果 58
5.2.4 空中三角測量成果 59
5.2.5 製圖精度分析 62
5.2.6 產製數值地表模型(DSM)與正射影像 63
5.3. 直接地理定位分析 72
5.3.1. 相對方位軸角與固定臂之率定成果 72
5.3.2. 前方交會定位精度分析 74
第6章. 結論與展望 77
6.1. 五相機攝影系統之系統率定 77
6.2. 影像拼接殘差分析 77
6.3. 空中三角測量 77
6.4. 數值地表模型(DSM) 78
6.5. 製圖精度分析 78
6.6. 直接地理定位 78
參考文獻 80
參考文獻 (1). Bay, H., Tuytelaars, T., Van Gool, L., 2008. SURF: Speeded Up Robust Features.
(2). Berni, J., Zarco-Tejada, P.J., Suarez, L., Fereres, E., 2009. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. Geoscience and Remote Sensing, IEEE Transactions on 47, 722-738.
(3). Chiang, K.W., Huang, Y.W., Li, C.Y., Chang, H.W., 2011. An ANN embedded RTS smoother for an INS/GPS integrated Positioning and Orientation System. Applied Soft Computing 11, 2633-2644.
(4). Cho, W., Schenk, T., 1992. Resampling Digital Imagery to Epipolar Geometry, IAPRS International Archives of Photogrammetry and Remote Sensing, pp. 404-408.
(5). Cramer, M., Stallmann, D., 2002. SYSTEM CALIBRATION FOR DIRECT GEOREFERENCING, ISPRS Comm. III Symposium 'Photogrammetric Computer Vision'. ISPRS Comm. III, Switzerland.
(6). El-Sheimy, N., 1996. The development of VISAT-A mobile survey system for gis applications, Department of Geomatics Engineering. University of Calgary.
(7). Fraser, C.S., 1997. Digital camera self-calibration. ISPRS Journal of Photogrammetry and Remote Sensing 52, 149-159.
(8). Gruber, M., Ladstädter, R., 2011. RESULTS FROM ULTRACAM MONOLITHIC STITCHING, ASPRS Annual Conference,, Milwaukee, WI.
(9). Holtkamp, D., Goshtasby, A., 2009. Precision Registration and Mosaicking of Multicamera Images. IEEE Trans. Geoscience and Remote Sensing 47, pp.3446-3455.
(10). Ip, A.W.L., El-Sheimy, N., Hutton, J., 2004. PERFORMANCE ANALYSIS OF INTEGRATED SENSOR ORIENTATION, IAPRS International Archives of Photogrammetry and Remote Sensing, Istanbul, Turkey, pp. 797-802.
(11). Ladstädter, R., Gruber, M., Wiechert, A., 2010. Monolithic stitching: one sensor geometry for multiple sensor cameras, American Society for Photogrammetry & Remote Sensing, San Diego, CA, pp. 26-30.
(12). Lowe, D.G., 2004. Distinctive Image Features from Scale-InvariantKeypoints. International Journal of Computer Vision, 91-110.
(13). Mostafa, M.M.R., 2001. Boresight Calibration of Integrated Inertial/Camera Systems, In Proc. International Symposium on Kinematic Systems in Geodesy, Geomatics and Navugation-KIS, Banff, Canada.
(14). NovAtel, 2013. SPAN-CPT Product Sheet, Available at http://www.novatel.com/assets/Documents/Papers/SPAN-CPT.pdf.
(15). Rau, J.Y., Chen, L.C., Liu, J.K., Wu, T.H., 2007. Dynamics Monitoring and Disaster Assessment forWatershed Management Using Time-Series Satellite Images. Geoscience and Remote Sensing, IEEE Transactions on 45, 1641-1649.
(16). Rau, J.Y., Habib, A.F., Kersting, A.P., Chiang, K.W., Bang, K.I., Tseng, Y.H., Li, Y.H., 2011. Direct Sensor Orientation of a Land-Based Mobile Mapping System. Sensors 11, 7243.
(17). Rau, J.Y., Jhan, J.P., Hsu, Y.C., 2015. Analysis of Oblique Aerial Images for Land Cover and Point Cloud Classification in an Urban Environment. Geoscience and Remote Sensing, IEEE Transactions on 53, 1304-1319.
(18). Rau, J.Y., Yeh, P.C., 2012. A semi-automatic image-based close range 3D modeling pipeline using a multi-camera configuration. Sensors 12, 11271-11293.
(19). Shin, E.H., 2005. Estimation Techniques for Low-Cost Inertial Navigation, Department of Geomatics Engineering. University of Calgary.
(20). Škaloud, J., 1999. Optimizing Georeferencing of Airborne Survey Systems by INS/DGPS, Department of Geomatics Engineering. University of Calgary.
(21). Stagakis, S., González-Dugo, V., Cid, P., Guillén-Climent, M.L., Zarco-Tejada, P.J., 2012. Monitoring water stress and fruit quality in an orange orchard under regulated deficit irrigation using narrow-band structural and physiological remote sensing indices. ISPRS Journal of Photogrammetry and Remote Sensing 71, 47-61.
(22). Strecha, C., Fransens, R., Van Gool, L., 2004. Wide-baseline stereo from multiple views: A probabilistic account, Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, pp. I-552-I-559.
(23). Strecha, C., Tuytelaars, T., Van Gool, L., 2003. Dense matching of multiple wide-baseline views, Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, pp. 1194-1201.
(24). Strecha, C., Van Gool, L., Fua, P., 2008. A Generative Model for True Orthorectification, ISPRS Congress, Beijing, pp. 303-308.
(25). Tola, E., Lepetit, V., Fua, P., 2010. DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo. Pattern Analysis and Machine Intelligence, IEEE Transactions on 32, 815-830.
(26). Tola, E., Strecha, C., Fua, P., 2012. Efficient large-scale multi-view stereo for ultra high-resolution image sets. Machine Vision and Applications 23, 903-920.
(27). Tommaselli, A., Galo, M., de Moraes, M., Marcato, J., Caldeira, C., Lopes, R., 2013. Generating Virtual Images from Oblique Frames. Remote Sensing 5, 1875-1893.
(28). Turner, D., Lucieer, A., Malenovský, Z., King, D., Robinson, S., 2014. Spatial Co-Registration of Ultra-High Resolution Visible, Multispectral and Thermal Images Acquired with a Micro-UAV over Antarctic Moss Beds. Remote Sensing 6, 4003-4024.
(29). Zeitler, D.W., Doerstel, C., Jacobsen, D.-I.K., 2002. GEOMETRIC CALIBRATION OF THE DMC: METHOD AND RESULTS, ASPRS, San Diego, CA.
(30). Zhuang, H., 1995. A self-calibration approach to extrinsic parameter estimation of stereo cameras. Robotics and Autonomous Systems 15.
(31). 王豐良, 2008. 應用GPS與非量測型相機於行動測繪車之研究, 國防大學中正理工學院. 國防大學中正理工學院.
(32). 史天元, 王蜀嘉, 蔡季欣, 李佩珊, 2013. 數位空載製圖相機. 地籍測量會刊 32(3), pp.1-17.
(33). 李育華, 2010. 車載移動式製圖系統之系統率定及其直接地理定位之效能分析, 測量及空間資訊學系. 國立成功大學.
(34). 施錦揮, 游政恭, 鄒慶敏, 蔡季欣, 林志清, 林燕山, 2010. 無人飛行載具應用於防救災圖資供應之研究-以北二高崩塌地為例. 中華民國第即測量學會會刊 29(3), pp.17-36.
(35). 章國威, 王淑姿, 申雍, 羅正宗, 黃鼎名, 蔡和霖, 2006. 應用抽穗期多光譜航照影像預估水稻產量之研究. 航測及遙測學刊, 12.
(36). 謝承璋, 2010. 雙鏡頭車載行動測繪之定位分析, 土木工程學系. 國立中央大學.
(37). 饒見有, 陳智揚, 詹鈞評, 劉暹, 李文慶, 2014. 無人機攝影測量與直接地理定位之精度分析. 國土測繪與空間資訊 2(1), 1-22.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-02-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-02-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw