進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2810201922185500
論文名稱(中文) 研究有機薄膜電晶體之雙極性傳輸特性與應用至互補式反相器
論文名稱(英文) Studies of ambipolar characteristics of organic thin-film transistors and their application in complementary-like inverters
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 108
學期 1
出版年 108
研究生(中文) 何淙潤
研究生(英文) Tsung-Jun Ho
學號 L78001169
學位類別 博士
語文別 英文
論文頁數 94頁
口試委員 指導教授-鄭弘隆
口試委員-周維揚
口試委員-唐富欽
口試委員-蔡健益
口試委員-江海邦
口試委員-陳健亨
口試委員-李明威
中文關鍵字 有機薄膜電晶體  五苯環  2,7-二辛基[1]苯並噻吩並[3,2-B]苯並噻吩  雙載子  溫度效應  傳輸特性 
英文關鍵字 organic thin-film transistor  pentacene  c8-BTBT  ambipolar  temperature effects  charge transport 
學科別分類
中文摘要 本論文探討有機薄膜電晶體之雙載子電荷傳輸特性,雙載子電荷傳輸意味主動層同時具有傳輸電子與電洞載子的能力。因此,雙載子薄膜電晶體的操作原理比起單載子薄膜電晶體更為複雜。論文第一部份,我們研究五苯環主動層之雙載子薄膜電晶體的溫度相關電特性,利用變温量測,探討於同一主動層通道中,電子與電洞載子的電荷傳輸行為差異。第二部份,利用兩個相同五苯環雙載子薄膜電晶體製作有機互補式反向器,簡稱有機雙載子互補式反向器,研究量測環境的溫度對此反向器的電特性的影響。第三部份,比較現今兩種最熱烈被研究的有機半導體,即五苯環與2,7-二辛基[1]苯並噻吩並[3,2-B]苯並噻吩,製作以此兩有機半導體當主動層之薄膜電晶體,從有機分子性質的觀點來探討元件中雙載子電荷傳輸行為的差異性。
第一部份,研究溫度對五苯環雙載子薄膜電晶體元件的電特性影響,元件被操作在不同的環境溫度,溫度範圍從77 K至300 K,在室溫下,五苯環元件表現出極高且相近的電子與電洞載子牽移率,其值約為1.6 cm2/Vs。隨著環境温度變化,觀察到電子與電洞載子牽移率與溫度皆呈現兩段斜率的阿瑞尼斯線性關係,轉折溫度約發生在210 K至230 K之間。於高溫區間,雙載子傳輸受限於電子與電洞的結合及釋放作用,而此作用為一種電場輔助及溫度活化的過程;當溫度低於210 K時,載子傳輸活化能與五苯環單載子電晶體趨於一致,可使用多重缺陷填滿及再釋放的傳輸機制合理解釋之。此外,我們亦發現隨温度下降,n通道操作需要較大的啟動電壓,且電子載子牽移率亦隨温度下降快速降低,指出電子較電洞更難從相反電荷載子的束縛中釋放。本章利用變温研究了雙載子電晶體元件n和p通道操作的差異,並比較至單極性元件,讓我們對雙極性電晶體的操作機制與原理有更進一步的了解。
第二部份,使用具高效率電子與電洞傳輸的平衡的雙載子五苯環薄膜電晶體,成功製作具高增益之有機雙載子互補式反向器,且可於室温至120 °C下正常工作。此類反相器可實現非極性操作,亦即於第一及第三象限下皆可操作。本章研究雙載子薄膜電晶體及對應反相器的溫度效應。本研究製作的五苯環薄膜電晶體具有雙載子傳輸的特性,結果指出主動層通道內雙載子釋放與複和行為,亦會影響製作的有機雙載子互補式反向器的溫度相關電特性。本研究發現此互補式反向器的轉換電壓差與溫度成一優良的線性關係,突顯了有機雙載子互補式反向器具有實現智慧型溫度感測器的潛力。
第三部份,以五苯環或2,7-二辛基[1]苯並噻吩並[3,2-B]苯並噻吩當主動層,使用相同的元件結構與組態,成功製作高效能有機薄膜電晶體。此兩種有機薄膜電晶體在室温可具備相近的載子牽移率,約為3.0 cm2/Vs,因此,提供良好的研究樣本,進行分子結構與元件的溫度相關載子傳輸機制的關連性探究。此外,本研究也利用理論計算有機分子晶體的異向載子傳輸特性與晶粒邊界效應,並與實驗結果討論之。室溫下,五苯環薄膜電晶體具有平衡雙載子傳輸特性,而2,7-二辛基[1]苯並噻吩並[3,2-B]苯並噻吩薄膜電晶體僅為單載子電洞傳輸特性,並觀察到兩電晶體迥異的溫度相關電特性,五苯環薄膜電晶體呈現阿瑞尼斯溫度相關的次線性電性行為,主要歸因於雙載子的複合與解離效應,而2,7-二辛基[1]苯並噻吩並[3,2-B]苯並噻吩薄膜電晶體,呈現阿瑞尼斯度溫度相關的超線性電性行為,主要歸因於晶粒內部載子高度異向傳輸特性。研究發現2,7-二辛基[1]苯並噻吩並[3,2-B]苯並噻吩的側鏈長碳基結構(五苯環不具備此結構),影響了薄膜型態及載子傳輸的特性,可用來解釋其具有高效的載子牽移率。理論計算指出有機分子形成結晶後的載子傳輸性質,可以幫助表徵不同的有機薄膜電晶體之電特性,對於設計和合成新型關鍵有機半導體材料,並應用於實際元件中具有重要啟發。
英文摘要 This thesis explores the ambipolar charge transfer (CT) properties of organic semiconductor (OSC)-based thin-film transistors (OTFTs). The operational principle of ambipolar OTFTs (AmOTFTs) is more complicated than that of unipolar OTFTs because of hole and electron carriers, i.e., dual carrier, which can accumulate and are transported in the active channel/layer (AL). In the first part, we studied the temperature-dependent electrical properties of pentacene-based AmOTFTs and explore the differences in the CT behavior of the electron and hole carriers in the same AL. In the second part, we studied the effects of the temperature on the electrical properties of organic complementary-like inverters composed of two identical pentacene-based AmOTFTs. In the third part, we compared the ambipolar CT properties of the two most intensively studied and benchmarked OSCs, pentacene and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzo-thiophene (c8-BTBT), in the OTFTs, to identify the ambipolar CT behavior in the device from molecule’s perspective.
In part I, the temperature-dependent electrical and CT characteristics of pentacene-based AmOTFTs were investigated at temperatures ranging from 77 K to 300 K. At room temperature (RT), the pentacene-based AmOTFTs exhibit balanced and high charge mobility with electron and hole mobilities, both at about 1.6 cm2/Vs. However, at lower temperatures, higher switch-on voltage of n-channel operations, almost absent n-channel characteristics, and strong temperature dependence of electron mobility indicated that electrons were more difficult to release from opposite-signed carriers than that of holes. We observed that electron and hole mobility both followed an Arrhenius-type temperature dependence and exhibited two regimes with a transition temperature at approximately 210 K to 230 K. At high temperatures, data were explained by a model in which charge transport was limited by a dual-carrier recombination and released (DCRR) process, which is an electric field-assisted thermal-activated procedure. At T < 210 K, the observed activation energy is in agreement with unipolar pentacene-based TFTs, suggesting a common multiple trapping and release process-dominated mechanism. Different temperature-induced characteristics between n- and p-channel operations are outlined, thereby providing important insights into the complexity of observing efficient electron transport in comparison with the hole of AmOTFTs.
In part II, Efficient and balanced pentacene-based AmOTFTs were prepared and ready for use to achieve simple fabrication of organic complementary-like inverter with high gains. Such organic complementary-like inverters can perform nonpolar operations, such as first and third quadrant operations, and can work normally up to nearly 120 °C. The effect of temperature on the electrical characteristics of AmOTFTs and the corresponding organic complementary-like inverters were investigated. Given the ambipolar nature of pentacene AL, the DCRR processes governed the temperature-dependent switch behaviors of the organic complementary-like inverters. A temperature-dependent linearity function was derived using the hysteresis switch voltage, thereby highlighting that organic complementary-like inverters could potentially be employed in temperature sensors.
In part III, High-performance OTFTs based on pentacene or c8-BTBT were prepared by using the same device configuration and were designated as pen-OTFTs and c8-OTFTs, respectively. Both OTFTs exhibit the comparable charge mobility of at least 3.0 cm2 V-1 s-1, thus providing excellent specimens for the study of T-dependent electrical and CT properties of different OSCs. The effects of crystalline orientation and boundary on the intrinsic CT properties of crystalline OSCs were also investigated theoretically. At room temperature, pen-OTFTs exhibited balanced ambipolar characteristics, whereas c8-OTFTs exhibited only unihole characteristics. Drastically different T-dependent electrical characteristics were observed. Pen-OTFTs showed sub-Arrhenius-like mobility–T behavior mainly due to dual-carrier effects, whereas c8-OTFTs showed super-Arrhenius-like mobility–T behavior attributed to the highly anisotropic CT nature of crystalline c8-BTBT. Alkyl side chains, a feature that is absent in pentacene, affected the film formation and intrinsic CT parameters of c8-BTBT and resulted in high mobility of c8-OTFTs. Theoretical insights into the intrinsic CT properties of crystalline OSCs may help characterize the different electrical characteristic of OTFTs and have important implications in the design and synthesis of novel key OSCs that require efficient CT properties for applications in real devices.
論文目次 Contents
摘要 I
Abstract III
Contents V
Index of Tables VII
Index of Figures VIII
Chapter 1 Introduction 1
1-1 Overview on organic semiconductor 1
1-1-1 History of organic semiconductors 1
1-1-2 Ambipolar OSCs 1
1-2 Research motivation and organization framework 3
1-2-1 Motivation 3
1-2-2 Organization framework 3
1-3 Operation principle of OSCs devices 5
1-3-1 OTFTs 5
1-3-2 CMOS inverter 6
1-4 CT mechanisms in OSC 7
1-4-1 Intermolecular charge transfer 7
1-4-2 Multiple trapping and release 8
1-4-3 DCRR 8
Reference 17
Chapter 2 Temperature-dependent ambipolar electrical characteristics of pentacene-based thin-film transistors 19
2-1 Introduction 19
2-2 Experimental 21
2-3 Results and discussion 22
2-3-1 Temperature dependent electrical characteristics 22
2-3-2 Temperature dependent carriers mobility 24
2-4 Conclusion 26
Reference 38
Chapter 3 Temperature effects on the electrical properties of ambipolar organic complementary-like inverters 40
3-1 Introduction 40
3-2 Experimental 42
3-3 Results & Discussion 43
3-3-1 Electrical characteristics of AmOTFTs at high temperature. 43
3-3-2 Temperature dependence of AmCL-inverters 44
3-3-3 Thermal stability of pentacene AL 45
3-4 Conclusion 47
Reference 57
Chapter 4 Comparison of pentacene and c8-BTBT thin-film transistors 59
4-1 Introduction 59
4-2 Experimental 61
4-2-1 Materials and device fabrication 61
4-3 Results and discussion 63
4-3-1 Temperature-dependence electrical characteristics 63
4-3-2 Comparison of Arrhenius-like behaviors 64
4-3-3 Theoretical perspective on CT properties 66
4-4 Conclusion 71
Reference 85
Chapter 5 Conclusions and outlook 89
參考文獻 chapter 1.
[1] D. Kearns and M. Calvin, Photovoltaic effect and photoconductivity in laminated organic systems, J. Chem. Phys. 29 (1958) 950-951.
[2] F. Ebisawa, T. Kurokawa, and S. Nara, Electrical properties of polyacetylene/polysiloxane interface, J. Appl. Phys.,54 (1983) 3255-3259.
[3] C. W. Tang, and S. A. Van Slyke, Organic electroluminescent diodes, Appl. Phys. Lett., 51 (1987) 913-915.
[4] S. Z. Bisri, C. Piliego, J. Gao and M. A. Loi, Outlook and emerging semiconducting materials for ambipolar transistors, Adv. Mater., 26 (2014) 1176-1199.
[5] J. Zaumseil and H. Sirringhaus, Electron and ambipolar transport in organic field-effect transistors, Chem. Rev., 107 (2007) 1296-1323.
[6] P. Sonar, S. P. Singh, Y. Li, M. S. Soh and A. Dodabalapur, A low‐bandgap diketopyrrolopyrrole‐benzothiadiazole‐based copolymer for high‐mobility ambipolar organic thin‐film transistors, Adv. Mater., 22 (2010) 5409-5413.
[7] Y. Ren, X. Y. Yang, L. Zhou, J. Y. Mao, S. T. Han, and Y. Zhou, Recent Advances in Ambipolar Transistors for Functional Applications, Adv. Funct. Mater., (2019) 1902105.
[8] S. Z. Bisri, T. Takenobu, Y. Yomogida, H. Shimotani, T. Yamao, S. Hotta and Y. Iwasa, High Mobility and Luminescent Efficiency in Organic Single‐Crystal Light‐Emitting Transistors, Adv. Funct. Mater., 19 (2009) 1728-1735.
[9] J. Zaumseil, R. H. Frien, and H. Sirringhaus, Spatial control of the recombination zone in an ambipolar light-emitting organic transistor, Nat. mater., 5 (2006) 69
[10] M. Ullah, K. Tandy, J. Li, Z. G. Shi, P. L. Burn, P. Meredith and E. B. Namdas, High mobility, heterostructure light-emitting transistors and complementary inverters, ACS Photonics, 1 (2014) 954-959.
[11] R. Ozdemir, D. Choi, M. Ozdemir, G. H. Kwon, H. Y. Kim, U. Sen, C. G. Kim and H. Usta, Ultralow bandgap molecular semiconductors for ambient-stable and solution-processable ambipolar organic field-effect transistors and inverters, J. Mater. Chem. C., 5 (2017) 2368-2379.
[12] M. Debucquoy, M. Rockelé, J. Genoe, G. H. Gelinck and P.Heremans, Charge trapping in organic transistor memories: On the role of electrons and holes, Org. Electron., 10 (2009) 1252-1258.
[13] J. H. Han, W. Wang, J. Ying and W. F. Xie, Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory, Appl. Phys. Lett., 104 (2014) 013302.
[14] A. R. Murphy and J. M. J. Frechet, Organic semiconducting oligomers for use in thin film transistors, Chem. Rev. 107 (2007) 1066-1096.
[15] C. D. Dimitrakopoulos and P. R. L. Malenfant, Organic thin film transistors for large area electronics, Adv. Mater. 14 (2002) 99-117.
[16] G. Horowitz, Organic field‐effect transistors, Adv. Mater., 10 (1998) 365-377.
[17] B. Crone, A. Dodabalapur, Y.-Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz and W. Li, Large-scale complementary integrated circuits based on organic transistors, Nature, 403 (2000) 521.
[18] T. D. Anthopoulos, S. Setayesh, E. Smits, M. Cölle, E. Cantatore, B. de Boer, P. W. M. Blom and D. M. de Leeuw, Air‐stable complementary‐like circuits based on organic ambipolar transistors, Adv. Mater., 18 (2006) 1900-1904.
[19] H. Klauk, U. Z schieschang, J. Pflaum and M. Halik, Ultralow-power organic complementary circuits, Nature, 445 (2007) 745.
[20] S. J. Kim and J. S. Lee, Flexible organic transistor memory devices, Nano lett., 10 (2010) 2884-2890.
[21] Q. D. Ling, D. J. Liaw, C. X Zhu, D. C. H. Chan, E. T. Kang and K. G. Neoh, Polymer electronic memories: Materials, devices and mechanisms, Adv. Polym. Sci., 33 (2008) 917-978.
[22] J. C. Scott and L. D. Bozano, Nonvolatile memory elements based on organic materials, Adv. Mater., 19 (2007) 1452-1463.
[23] L. Y. Chiu, H. L. Cheng, W. Y. Chou, and F. C. Tang, The influence of dual-carrier recombination and release on electrical characteristics of pentacene-based ambipolar transistors, Appl. Phys. Lett., 103 (2013) 193302.
[24] L. Y. Chiu, H. L. Cheng, H. Y. Wang, W. Y. Chou, and F. C. Tang, Manipulating the ambipolar characteristics of pentacene-based field-effect transistors, J. Mater. Chem. C., 2 (2014) 1823.
[25] A. Kokil, K. Yang. and J. Kumar, Techniques for characterization of charge carrier mobility in organic semiconductors." J. Polym. Sci. Pol. Phys., 50 (2012) 1130-1144.
[26] R. A. Marcus, Electron transfer reactions in chemistry. Theory and experiment, Rev. Mod. Phy.,65 (1993) 599.
[27] G. Nan, X. Yang, L. Wang, Z. Shuai and Y. Zhao, Nuclear tunneling effects of charge transport in rubrene, tetracene, and pentacene, Phys. Rev. B, 79 (2009) 115203.

chapter 2.[1] J. Cornil, J.-L. Brédas, J. Zaumseil and H. Sirringhaus, Ambipolar transport in organic conjugated materials, Adv. Mater., 19 (2007) 1791.
[2] J. Zaumseil and H. Sirringhaus, Electron and ambipolar transport in organic Field- effect transistors, Chem. Rev., 107 (2007) 1296. And reference therein.
[3] E. C. P. Smits, T. D. Anthopoulos, S. Setayesh, E. van Veenendaal, R. Coehoorn,
P. W. M. Blom, B. de Boer, and D. M. de Leeuw, Ambipolar charge transport in
organic field-effect transistors, Phys. Rev. B, 73 (2006) 205316.
[4] J. A. Letizia, J. Rivnay, A. Facchetti, Mark A. Ratner, and T. J. Marks, Variable Temperature mobility snalysis of n-Channel, p-Channel, and ambipolar organic field-effect transistors, Adv. Funct. Mater., 20 (2010) 50. And reference therein.
[5] L. Y. Chiu, H. L. Cheng, W. Y. Chou, and F. C. Tang, The influence of dual-carrier recombination and release on electrical characteristics of pentacene-based ambipolar transistors, Appl. Phys. Lett., 103 (2013) 193302.
[6] T. J. Ha, P. Sonar, B. Cobb, and A. Dodabalapur, Charge transport and density of trap states in balanced high moblility ambipolar organic thin-film transistors, Org. Electron., 13 (2012) 136.
[7] S. F. Nelson, Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, Temperature-independent transport in high-mobility pentacene transistors, Appl. Phys. Lett., 72 (1998) 1854.
[8] D. Knipp, R. A. Street, and A. R. Vőlke, Morphology and electronic transport of polycrystalline pentacene thin-film transistors, Appl. Phys. Lett., 82 (2003) 3907.
[9] L. Dunn and A. Dodabalapur, Temperature dependent transient velocity and mobility studies in an organic field effect transistor, J. Appl. Phys., 107 (2010) 113714.
[10] H. S. Seo, Y. S. Jang, Y. Zhang, P. S. Abthagir, and J. H. Choi, Fabrication and characterization of pentacene-based transistors with a room-temperature mobility of 1.25 cm2/Vs, Org. Electron., 9 (2008) 432.
[11] G. Horowitz, Organic field-effect transistors, Adv. Mater., 10 (1998) 365.
[12] V. Coropceanu, J. Comil, D. A. D. S. Filho, Y. Olivier, R. Silbey, J. L. Bredas, Charge transport in organic semiconductors, Chem. Rev., 107 (2007) 926.
[13] Z. Chen, M. Bird,V. Lemaur, G. Radtke, J. Cornil, M. Heeney, I. McCulloch, and H. Sirringhaus, Origin of the different transport properties of electron and hole polarons in an ambipolar polyselenophene-based conjugated polymer, Phys. Rev. B, 84 (2011) 115211.
[14] T. Takenobu, K. Watanabe, Y. Yomogida, H. Shimotani, and Y. Iwasa, Effect of postannealing on the performance of pentacene single-crystal ambipolar transistors, Appl. Phys. Lett., 93 (2008) 073301.
[15] M. Schidleja, C. Melzer, and H. von Seggern, Electroluminescence from a pentacene based ambipolar organic field-effect transistor, Appl. Phys. Lett., 94 (2009) 123307.
[16] L. Y. Chiu, H. L. Cheng, H. Y. Wang, W. Y. Chou, and F. C. Tang, Manipulating the ambipolar characteristics of pentacene-based field-effect transistors, J. Mater. Chem. C., 2 (2014) 1823.
[17] A. R. S. Kandada, A. Petrozza, and G. Lanzani, Ultrafast dissociation of triplets in pentacene induced by an electric field, Phys. Rev. B, 90 (2014) 075310.
[18] C. Jundt, G. Klein, B. Sipp, J. Le Moigne, M. Joucla, and A. A. Villaeys, Exciton dynamics in pentacene thin films studied by pump-probe sepctroscopy, Chem. Phys. Lett., 241 (1995) 84.

chapter 3.
[1] H. Sirringhaus, “Organic field-effect transistors: The path beyond amor- phous
silicon,” Adv. Mater., 26 (2014) 1319–1335.
[2] G. Gelinck, P. Heremans, K. Nomoto, and T. D. Anthopoulos, “Organic transistors
in optical displays and microelectronic applications,” Adv. Mater., 22 (2010) 3778-3798.
[3] E. J. Meijer, D. M. De Leeuw, S. Setayesh, E. V. Veenendaal, B. -H. Huisman, P. M.
W. Blom, J. C. Hummelen, U. Scherf, and T. M. Klapwijk, “Solution-processed
ambipolar organic field-effect transistors and inverters”, Nat Mater., 2 (2003) 678-
682.
[4] M. Chikamatsu, T. Mikami, J. Chisaka, Y. Yoshida, R. Azumi, K. Yase, A. Shimizu,
T. Kubo, Y. Morita, and K. Nakasuji, “Ambipolar organic field-effect transistors
based on a low band gap semiconductor with balanced hole and electron mobilities,”
Appl. Phys. Lett., 91 (2007) 043506.
[5] S.D. Wang, K. Kanai, Y. Ouchi and K. Seki, “Bottom contact ambipolar organic
thin film transistor and organic inverter based on C60/pentacene heterostructure,”
Org. Electron., 7 (2006) 457-464.
[6] Th. B. Singh, P. Senkarabacak, N. S. Sariciftci, A. Tanda, C. Lackner, R. Hagelauer,
and Gilles Horowitz, “Organic inverter circuits employing ambipolar pentacene
field-effect transistors,” Appl. Phys. Lett., 89 (2006) 033512.
[7] R. Ozdemir, D. Choi, M. Ozdemir, G. Kwon, H. Kim, U. Sen, C. Kim, and H. Usta,
“Ultralow bandgap molecular semiconductors for ambient-stable and solution-
processable ambipolar organic field-effect transistors and inverters,” J. Mater.
Chem. C, 5 (2017) 2368-2379.
[8] L. Y. Chiu, H. L. Cheng, H. Y. Wang, W. Y. Chou, and F. C. Tang, “Manipulating
the ambipolar characteristics of pentacene-based field-effect transistors,” J. Mater.
Chem. C, 2 (2014) 1823-1829.
[9] J. Zaumseil and H. Sirringhaus, “Electron and ambipolar transport in organic field-
effect transistors,” Chem. Rev., 107 (2007) 1296-1323.
[10] L. Y. Chiu, H. L. Cheng, W. Y. Chou, and F. C. Tang, “The influence of dual-carrier recombination and release on electrical characteristics of pentacene-based ambipolar transistors,” Appl. Phys. Lett., 103(2013) 193302.
[11] O. Pitayatanakul, K. Iijima, M. Ashizawa, T. Kawamoto, H. Matsumotoa and T. Mori, “An iodine effect in ambipolar organic field-effect transistors based on indigo derivatives,” J. Mater. Chem. C, 3 (2015) 8612-8617.
[12] W. S. C. Roelofs, S. G. J. Mathijssen, J. C. Bijleveld, D. Raiteri, T. C. T. Geuns, M. Kemerink, E. Cantatore, R. A. J. Janssen, and D. M. de Leeuw. “Fast ambipolar integrated circuits with poly(diketopyrrolopyrrole- terthiophene),” Appl. Phys. Lett., 98 (2011) 203301.
[13] B. Kim, S. Jang, M. L. Geier, P. L. Prabhumirashi, M. C. Hersam, and A. Dodabalapur, “Inkjet printed ambipolar transistors and inverters based on carbon nanotube/zinc tin oxide heterostructures,” Appl. Phys. Lett., 104 (2014) 062101.
[14] T. J. Ho, H. L. Cheng, L. Y. Chiu, W. Y. Chou and F. C. Tang, “Temperature-dependent ambipolar electrical characteristics of pentacene-based thin-film transistors: The impact of opposite-sign charge carriers,” Org. Electron., 25 (2015) 74-78.
[15] K.A.A. Makinwa, “Smart temperature sensors in standard CMOS,” Procedia Engineering, 5 (2010) 930-939.
[16] U. Sönmez, F. Sebastiano, and K. A. Makinwa, “Compact thermal-diffusivity-based temperature sensors in 40-nm CMOS for SoC thermal monitoring,” IEEE J. Solid-State Circuits, 52 (2017) 834-843.
[17] F. Udrea, S. Santra, J. W. Gardner, “CMOS temperature sensors - concepts, state-of-the-art and prospects,” Proceedings of the International Semiconductor Conference, CAS, 1 (2008) 31-40.
[18] F. Reverter, J. Altet, “MOSFET temperature sensors for on-chip thermal testing,” Sens. Actu. A: Phys., vol. 203, pp. 234-240, Dec. 2013, doi: 10.1016/j.sna.2013.08.026.
[19] K. Kawashima, R. Inoue, T. Kanaya, G. Matsuba, K. Nishida and M. Hino, “Distribution of Glass Transition Temperature Tg in a Polymer Thin Film by Neutron Reflectivity,” Journal of Physics: Conference Series, 184 (2009) 012004.
[20] S. Haas, B. Batlogg, C. Besnard, M. Schiltz, C. Kloc, and T. Siegrist, “Large uniaxial negative thermal expansion in pentacene due to steric hindrance,” Phys. Rev. B, 76 (2007) 205203.
[21] T. Jentzsch, H. T. Juepner, K. W. Brzezinka, and A. Lau, “Efficiency of optical second harmonic generation from pentacene films of different morphology and structure,” Thin Solid Films, 315 (1998) 273-280.
[22] H.-L. Cheng and J. W. Lin, “Controlling polymorphic transformations of pentacene crystal through solvent treatments: an experimental and theoretical study,” Cryst. Growth Des., 10 (2010) 4501-4508.
[23] C.-W. Hung, Studies of temperature effects on electrical properties of ambipolar organic field-effect transistors and complementary inverters, National Cheng Kung University, 2011.

chapter 4.[1] a) H. Klauk (ed), Organic Electronics: Materials, Manufacturing, and Applications,
Wiley-VCH, Weinheim, Germany, 2006; b) H. Klauk (ed), Organic Electronics II: More Materials and Applications, Wiley-VCH, Weinheim, Germany, 2012.
[2] A. Köhler, H. Bässler, Electronic Process in Organic Semiconductors: An Introduction, Wiley-VCH, Weinheim, Germany, 2015.
[3] V. Coropceanu, J. Cornil, da Silva Filho, Y. Olivier, R. Silbey, J.-L. Brédas, Charge Transport in Organic Semiconductors, Chem. Rev., 107 (2007) 926.
[4] G. Schweicher, HY. Olivier, V. Lemaur, Y. H. Geerts, What Currently Limits Charge Carrier Mobility in Crystals of Molecular Semiconductors?, Isr. J. Chem., 54 (2014) 595.
[5] Z. Bao and J. Locklin (eds), Organic Field-Effect Transistors, CRC press, BocaRaton, FL, 2007.
[6] Y. Tsutsui, G. Schweicher, B. Chattopadhyay, T. Sakurai, J.‐B. Arlin, C. Ruzié, A. Aliev, A. Ciesielski, S. Colella, A. R. Kennedy, V. Lemaur, Y. Olivier, R. Hadji, L. Sanguinet, F. Castet, S.Osella, D. Dudenko, D. Beljonne, J. Cornil, P. Samorì, S. Seki, Y. H. Geerts, Unraveling Unprecedented Charge Carrier Mobility through Structure Property Relationship of Four Isomers of Didodecyl[1]benzothieno[3,2-b][1]benzothiophene, Adv. Mater., 28 (2016) 7106.
[7] O. D. Jurchescu, M. Popinciuc, B. J. Van Wees and T. T. M. Palstra, Interface‐Controlled, High‐Mobility Organic Transistors, Adv. Mater., 19 (2007) 688.
[8] C.‐H. Wang, C.‐Y. Hsieh, J.‐C. Hwan, Flexible Organic Thin‐Film Transistors with Silk Fibroin as the Gate Dielectric, Adv. Mater., 23 (2011) 1630.
[9] Y. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. B. Mannsfeld, J. Chen, D. Nordlund, M. F. Toney, J. Huang, Z. Bao, Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method, Nat. Commun., 5 (2014) 3005.
[10] J. Cho, T. Higaashino, T. Mori, Band-like Transport down to 20 K in Organic Single-Crystal Transistors Based on Dioctylbenzothienobenzothiophene, Appl. Phys. Lett., 106 (2015) 193303.
[11] H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, T. Hasegawa, Inkjet printing of single-crystal films, Nature, 475 (2011) 364.
[12] N. Benson, M. Schidleja, C. Melzer, R. Schmechel, and H. v. Seggern, Complementary Organic Field Effect Transistors by Ultraviolet Dielectric Interface Modification, Appl. Phys. Lett., 89 (2006) 182105.
[13] J. Zaumseil, H. Sirringaus, Electron and Ambipolar Transport in Organic Field-Effect Transistors, Chem. Rev., 107 (2007) 1296.
[14] T. Takenobu, K. Watanabe, Y. Yomogida, H. Shimotani, Y. Iwasa, Effect of Postannealing on The Performance of Pentacene Single-Crystal Ambipolar Transistors, Appl. Phys. Lett., 93 (2008) 073301.
[15] L. Y. Chiu, H. L. Cheng, W. Y. Chou and F. C. Tang, Appl. Phys. Lett., The Influence of Dual-Carrier Recombination and Release on Electrical Characteristics of Pentacene-based Ambipolar Transistors, 103 (2013) 193302.
[16] L. Y. Chiu, H. L. Cheng, H. Y. Wang, W. Y. Chou, and F. C. Tang, Manipulating The Ambipolar Characteristics of Pentacene-based Field-effect Transistors, J. Mater. Chem. C, 2 (2014) 1823.
[17] Ebata, H., Izawa, T., Miyazaki, E., Takimiya, K., Ikeda, M., Kuwabara, H. and Yui, T., Highly Soluble [1]Benzothieno[3,2-b]benzothiophene (BTBT) Derivatives for High-Performance, Solution-Processed Organic Field-Effect Transistors, J. Am. Chem. Soc. 129 (2007) 15732.
[18] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, Chemistry with ADF, J. Comput. Chem., 22 (2001) 931.
[19] K. Senthilkumar, F. C. Grozema, F. M. Bickelhaupt, L. D. A. Siebbeles, Charge Transport in Columnar Stacked Triphenylenes: Effects of Conformational Fluctuations on Charge Transfer Integrals and Site Energies, J. Chem. Phys., 119 (2003) 9809.
[20] S. Schiefer, M. Huth, A. Dobrinevski, B. Nickel, Determination of the Crystal Structure of Substrate-Induced Pentacene Polymorphs in Fiber Structured Thin Films, J. Am. Chem. Soc., 129 (2007) 10316.
[21] T. Izawa, E. Miyazaki, K. Takimiy, Molecular Ordering of High‐Performance Soluble Molecular Semiconductors and Re‐evaluation of Their Field‐Effect Transistor Characteristics, Adv. Mater., 20 (2008) 3388.
[22] T. J. Ho, H. L. Cheng, L. Y. Chiu, W. Y. Chou and F. C. Tang, Temperature-dependent ambipolar electrical characteristics of pentacene-based thin-film transistors: The impact of opposite-sign charge carriers, Org. Electron., 25 (2015) 74.
[23] J. A. Letizia, J. Rivnay, A. Facchetti, M. A. Ratner, T. J. Marks, Variable. Temperature Mobility Analysis of n‐Channel, p‐Channel, and Ambipolar Organic Field‐Effect Transistors, Adv. Funct. Mater., 20 (2010) 50.
[24] G. Horowitz, Organic Field‐Effect Transistors, Adv. Mater., 10 (1998) 365.
[25] P. Stallinga, H. L. Gomes, F. Biscarini, M. Murgia, D. M. de Leeuw, Electronic Transport in Field-Effect Transistors of Sexithiophene, J. Appl. Phys., 96 (2004) 5277.
[26] M. Abbas, A. Pivrikas, E. Arici, N. Tekin, M. Ullah, H. Sitter, N. S. Sariciftci, Temperature Dependent Charge Transport in Organic Field-Effect Transistors with The Variation of Both Carrier Concentration and Electric Field, J. Phys. D: Appl. Phys., 46 (2013) 495105.
[27] S. Illig, A. S. Eggeman, A. Troisi, L. Jiang, C. Warwick, M. Nikolka, G. Schweicher, S. G. Yeates, Y. H. Geerts, J. E. Anthony, H. Sirringhaus, Reducing Dynamic Disorder in Small-Molecule Organic Semiconductors by Suppressing Large-Amplitude Thermal Motions, Nat. Commun., 7 (2016) 10736.
[28] R. A. Marcus, Electron Transfer Reactions in Chemistry: Theory and Experiment, Angew. Chem., Int. Ed., 32 (1993) 1111.
[29] I. Yavuz, B. N. Martin, J. Park, K. N. Houk, Theoretical Study of the Molecular. Ordering, Paracrystallinity, And Charge Mobilities of Oligomers in Different Crystalline Phases, J. Am. Chem. Soc., 137 (2015) 2856.
[30] S. T. Bromley, M. Mas-Torrent, P. Hadley, C. Rovira, Importance of Intermolecular Interactions in Assessing Hopping Mobilities in Organic Field Effect Transistors:  Pentacene versus Dithiophene-tetrathiafulvalene, J. Am. Chem. Soc., 126 (2004) 6544.
[31] H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang and X. W. Liang, Thickness‐Dependent Structural Evolutions and Growth Models in Relation to Carrier Transport Properties in Polycrystalline Pentacene Thin Films, Adv. Funct. Mater., 17 (2007) 3639.
[32] S.-H. Wen, A. Li, J. Song, W.-Q. Deng, K.-L. Han, W. A. Goddard III, First-Principles Investigation of Anistropic Hole Mobilities in Organic Semiconductors, J. Phys. Chem. B, 113 (2009) 8813.
[33] Y. Zhou, W. Q. Deng, H.-L. Zhang, Phonon-Electron Coupling and Tunneling Effect. on Charge Transport in Organic Semiconductor Crystals of Cn-BTBT, J. Chem. Phys. 145 (2016) 104108.
[34] H. Kobayashi, N. Kobayashi, S. Hosoi, N. Koshitani, D. Murakami, R. Shirasawa, Y. Kudo, D. Hobara, Y. Tokita, M. Itabashi, Hopping and Band Mobilities of Pentacene, Eubrene, and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) from First Principle Calculations, J. Chem. Phys., 139 (2013) 014707.
[35] M. Dohr, H. M. A. Ehmann, A. O. F. Jones, I. Salzmann, Q. Shen, C. Teichert, C. Ruzie´, G. Schweicher, Y. H. Geerts, R. Resel, M. Sferrazzaf and O. Werzer, Reversibility of Temperature Driven Discrete Layer-by-Layer Formation of Dioctyl-Benzothieno-Benzothiophene Films, Soft Matter, 13 (2017) 2322.
[36] S. Haas, B. Batlogg, C. Besnard, M. Schiltz, C. Kloc, T. Siegrist, Large uniaxial negative thermal expansion in pentacene due to steric hindrance, Phys. Rev. B, 76 (2007) 205203.
[37] H. L. Cheng, J. W. Lin, Controlling Polymorphic Transformations of Pentacene. Crystal through Solvent Treatments: An Experimental and Theoretical Study, Cryst. Growth Des., 10 (2010) 4501.
[38] Two-layer ONIOM approach in combined with Coulomb-attenuating method (CAM-B3LYP) was used to observe the optimized geometry of the embedded molecules (assigned to the high-level layer) in the presence of the surrounding molecules (assigned to the low-level layer). The CAM-B3LYP is an improved long-range corrected version of B3LYP.
[39] P. Darmawan, T. Minari, Y. Xu, S. L. Li, H. Song, M. Chan and K. Tsukagoshi, Optimal Structure for High‐Performance and Low‐Contact‐Resistance Organic Field‐Effect Transistors Using Contact‐Doped Coplanar and Pseudo‐Staggered Device Architectures, Adv. Funct. Mater., 22 (2012) 4577.
[40] H. L. Cheng, X. W. Liang, W. Y. Chou, Y. S. Mai, C. Y. Yang, L. R. Chang, F. C. Tang, Raman spectroscopy applied to reveal polycrystalline grain structures and carrier transport properties of organic semiconductor films: Application to pentacene-based organic transistors, Org. Electron., 10 (2009) 289.
[41] M. Shtein, J. Mapel, J. B. Benziger and S. R. Forrest, Effects of Film Morphology and Gate Dielectric Surface Preparation on The Electrical Characteristics of Organic-Vapor-Phase-Deposited Pentacene Thin-Film Transistors, Appl. Phys. Lett., 81 (2002) 268.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-09-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-09-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw