進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2808202015155700
論文名稱(中文) 高溫W-TiC多層太陽能選擇性吸收膜
論文名稱(英文) High temperature W-TiC Multilayer Solar Selective Coatings
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 卓佾輝
研究生(英文) Yi-Hui Zhuo
學號 N56051043
學位類別 碩士
語文別 中文
論文頁數 79頁
口試委員 指導教授-丁志明
口試委員-黃肇瑞
口試委員-齊孝定
口試委員-張高碩
口試委員-蘇彥勳
中文關鍵字 碳化鈦    太陽能選擇性吸收膜  瓷金材料  反應式磁控濺鍍 
英文關鍵字 Titanium carbide  solar selective coating  cermet  reactive magnetron sputtering 
學科別分類
中文摘要 為了研究高溫型太陽能選擇性吸收膜(High temperature SSC),吾人利用反應式磁控濺鍍設備,成功沈積添加金屬鎢的碳化鈦薄膜在不鏽鋼基板上,其中以甲烷作為反應氣體,而鎢靶和鈦靶分別以RF和DC電源供應器濺射。薄膜中的鎢含量,以鎢靶功率大小進行調控。分析包括XRD繞射、Raman吸收光譜、SEM表面形貌、TEM高解析截面、反射率光譜以及折射率,在其光學效能最佳化的同時,亦研究了其鎢靶功率對材料性質的關聯性。探討在鎢靶功率不同時,其結晶性、結構對於光學性質的影響。
在漸層式雙層以及抗反射層的添加後,完整的結構為四層:SS/ W/ HM W-TiC/ LM W-TiC/ HfO2,在最佳化後,太陽能吸收率高達94.8%,且熱放射率僅有9.7%,太陽能選擇性高達9.77。除此之外,熱穩定性的研究以空氣下退火來進行,在相同的退火時間之下,以調控不同退火溫度,來展現不同高溫環境之下,該薄膜的穩定程度。在2小時700°C的退火之後,此SSC仍能表現出93.2%的高吸收率,以及9.8%的熱放射率,且並無其他相生成,足以說明其極佳的熱穩定性。
英文摘要 Tungsten-embedded titanium carbide (W-TiC) cermet solar selective coatings were deposited on the stainless steel substrates by using DC and RF reactive magnetron co-sputtering. Different W content was controlled by varying the W target power. The correlation between W embedding quantity and material characteristics (i.e. XRD pattern, Raman spectrum, SEM morphology, TEM cross section and reflectance spectrum) were investigated. The whole multilayer: SS/ W/ HM W-TiC/ LM W-TiC/ HfO2 was deposited and achieve 94.8% of absorptance and 9.8% of emittance (at 100°C). The thermal stability was studied by annealing process in air at different temperature (i.e. 600°C, 700°C and 800°C) for 2 hours. By measuring the XRD and reflectance spectrum, It is confirmed that the thermal stability of the whole multilayer was up to 700°C in air.
論文目次 摘要 I
EXTENDED ABSTRACT II
誌謝 XVIII
總目錄 XIX
表目錄 XXII
圖目錄 XXIII
第1章 緒論 1
1.1 前言 1
1.2 研究動機及目的 2
第2章 理論背景與文獻回顧 3
2.1 材料光學性質及太陽能光譜 3
2.2.1 光與材料的基本作用 3
2.2.2 太陽能光譜及太陽能吸收率 4
2.2.3 黑體輻射與熱放射率 7
2.2 太陽能發電廠 9
2.3 太陽能選擇性吸收膜 13
2.4 碳化鈦 17
2.5 鎢 20
2.6 氧化鉿 21
2.7 物理氣相沈積與濺鍍 22
2.7.1 濺射機制 22
2.7.2 成膜機制 25
第3章 實驗方法與分析原理 27
3.1 實驗藥品與材料 27
3.2 實驗流程 29
4.1.1 基板清洗 29
4.1.2 濺鍍沈積製程 29
4.1.3 熱處理製程 32
3.3 分析儀器 33
3.4.1 場發式掃描式電子顯微鏡 33
3.4.2 X光繞射儀 35
3.4.3 拉曼散射光譜儀 37
3.4.4 穿透式電子顯微鏡 38
3.4.5 UV-vis-IR分光光譜儀 39
3.4.6 放射率儀 40
3.4.7 橢圓偏光儀 40
第4章 結果與討論 41
4.1 W-TIC單層瓷金吸收層 41
4.1.1 截面形貌與鍍膜速率 41
4.1.2 表面形貌 44
4.1.3 結晶結構 46
4.1.4 拉曼光譜 48
4.1.5 高解析顯微結構 50
4.1.6 光學效能 52
4.1.7 熱穩定性 56
4.2 雙層結構與三層結構SSC 62
4.2.1 氧化鉿單層抗反射層 62
4.2.2 光學效能 63
4.3 四層結構SSC 68
4.3.1 光學效能 68
4.3.2 熱穩定性 70
第5章 結論 74
第6章 參考文獻 75
參考文獻 1. Abbott, D., Keeping the Energy Debate Clean: How Do We Supply the World's Energy Needs? Proceedings of the IEEE, 2010. 98(1): p. 42-66.
2. IEA (2019), R., IEA, Paris https://www.iea.org/reports/renewables-2019.
3. Tabor, H., Selective radiation I. Wavelength discrimination. Bull. Res. Counc. of Isr. Sect. A: Chem, 1956. 5: p. 119-128.
4. Karp, J., Concentrating solar power: progress and trends. Jacobs School of Engineering, University of California San Diego, Triton SPIE/OSA, 2009.
5. Fuqiang, W., et al., Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review. Renewable and Sustainable Energy Reviews, 2017. 79: p. 1314-1328.
6. Bermel, P., et al., Selective solar absorbers. Annual Review of Heat Transfer, 2012. 15.
7. Cao, F., et al., A review of cermet-based spectrally selective solar absorbers. Energy & Environmental Science, 2014. 7(5): p. 1615-1627.
8. Willets, K.A. and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007. 58: p. 267-297.
9. Fan, J.C. and S.A. Spura, Selective black absorbers using rf‐sputtered Cr2O3/Cr cermet films. Applied Physics Letters, 1977. 30(10): p. 511-513.
10. Teixeira, V., et al., Spectrally selective composite coatings of Cr–Cr2O3 and Mo–Al2O3 for solar energy applications. Thin Solid Films, 2001. 392(2): p. 320-326.
11. Nunes, C., et al., Graded selective coatings based on chromium and titanium oxynitride. Thin Solid Films, 2003. 442(1-2): p. 173-178.
12. Yin, Y., et al., Direct current reactive sputtering Cr–Cr2O3 cermet solar selective surfaces for solar hot water applications. Thin Solid Films, 2009. 517(5): p. 1601-1606.
13. Cheng, J., et al., Improvement of thermal stability in the solar selective absorbing Mo–Al2O3 coating. Solar energy materials and solar cells, 2013. 109: p. 204-208.
14. Barshilia, H.C., et al., Structure and optical properties of Ag–Al2O3 nanocermet solar selective coatings prepared using unbalanced magnetron sputtering. Solar Energy Materials and Solar Cells, 2011. 95(7): p. 1707-1715.
15. Antonaia, A., et al., Stability of W-Al2O3 cermet based solar coating for receiver tube operating at high temperature. Solar Energy Materials and Solar Cells, 2010. 94(10): p. 1604-1611.
16. Xinkang, D., et al., Microstructure and spectral selectivity of Mo–Al2O3 solar selective absorbing coatings after annealing. Thin Solid Films, 2008. 516(12): p. 3971-3977.
17. Zhang, Q.-C., Direct current magnetron sputtered W–AlN cermet solar absorber films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1997. 15(6): p. 2842-2846.
18. Nishimura, M. and T. Ishiguro, Solar selective absorber coating composed of aluminum and nitrogen with high performance induced by surface roughness. Japanese journal of applied physics, 2004. 43(2R): p. 757.
19. Esposito, S., et al., Fabrication and optimisation of highly efficient cermet-based spectrally selective coatings for high operating temperature. Thin Solid Films, 2009. 517(21): p. 6000-6006.
20. Zhang, K., et al., A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings. Renewable and Sustainable Energy Reviews, 2017. 67: p. 1282-1299.
21. Wuchina, E., et al., UHTCs: Ultra-High Temperature Ceramic Materials for Extreme Environment Applications. The Electrochemical Society Interface, 2007: p. 30.
22. Coulibaly, M., et al., From colloidal precursors to metal carbides nanocomposites MC (M= Ti, Zr, Hf and Si): synthesis, characterization and optical spectral selectivity studies. Solar Energy Materials and Solar Cells, 2015. 143: p. 473-479.
23. Sigrist, M., et al., PROPRIETES OPTIQUES DES NITRURES ET CARBONITRURES DE TITANE-SELECTIVITE SPECTRALE. Le Journal de Physique Colloques, 1981. 42(C1): p. C1-453-C1-463.
24. Gao, X.-H., et al., Structure, optical properties and thermal stability of TiC-based tandem spectrally selective solar absorber coating. Solar Energy Materials and Solar Cells, 2016. 157: p. 543-549.
25. Gao, X.-H., et al., Enhanced thermal stability and spectral selectivity of SS/TiC-Y/Al2O3 spectrally selective solar absorber by thermal annealing. Solar Energy, 2016. 140: p. 199-205.
26. Wei, Q., et al., High temperature spectral selective TiC-Ni/Mo cermet-based coatings for solar thermal systems by laser cladding. Solar Energy, 2018. 171: p. 247-257.
27. Gruber, D., et al., Modeling the absorption behavior of solar thermal collector coatings utilizing graded α-C: H/TiC layers. Applied optics, 2009. 48(8): p. 1514-1519.
28. Signore, M., A. Sytchkova, and A. Rizzo, Sputtering deposition and characterization of tandem absorbers for photo-thermal systems operating at mid temperature. Optical Materials, 2011. 34(1): p. 292-297.
29. Gao, X.-H., et al., Microstructure, chromaticity and thermal stability of SS/TiC-WC/Al2O3 spectrally selective solar absorbers. Solar Energy Materials and Solar Cells, 2017. 164: p. 63-69.
30. Gao, X.-H., et al., Structure, optical properties and thermal stability of SS/TiC–ZrC/Al 2 O 3 spectrally selective solar absorber. RSC advances, 2016. 6(68): p. 63867-63873.
31. Berghaus, A., A. Djahanbakhsh, and L. Thomas, Characterisation of CVD-tungsten–alumina cermets for high-temperature selective absorbers. Solar Energy Materials and Solar Cells, 1998. 54(1-4): p. 19-26.
32. Ordal, M.A., et al., Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths. Applied optics, 1988. 27(6): p. 1203-1209.
33. Selvakumar, N. and H.C. Barshilia, Review of physical vapor deposited (PVD) spectrally selective coatings for mid-and high-temperature solar thermal applications. Solar energy materials and solar cells, 2012. 98: p. 1-23.
34. Cao, F., et al., Enhanced Thermal Stability of W‐Ni‐Al2O3 Cermet‐Based Spectrally Selective Solar Absorbers with Tungsten Infrared Reflectors. Advanced Energy Materials, 2015. 5(2): p. 1401042.
35. Wang, X., et al., High-temperature tolerance in WTi-Al2O3 cermet-based solar selective absorbing coatings with low thermal emissivity. Nano Energy, 2017. 37: p. 232-241.
36. Shaha, K., et al., Influence of hardness and roughness on the tribological performance of TiC/aC nanocomposite coatings. Surface and Coatings Technology, 2010. 205(7): p. 2624-2632.
37. Ritala, M., et al., Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy. Thin Solid Films, 1994. 250(1-2): p. 72-80.
38. Al-Kuhaili, M., Optical properties of hafnium oxide thin films and their application in energy-efficient windows. Optical Materials, 2004. 27(3): p. 383-387.
39. Bronson, A., et al., Compatibility of refractory metal boride/oxide composites at ultrahigh temperatures. Journal of the Electrochemical Society, 1992. 139(11): p. 3183.
40. Selvakumar, N., et al., Structure, optical properties and thermal stability of pulsed sputter deposited high temperature HfOx/Mo/HfO2 solar selective absorbers. Solar Energy Materials and Solar Cells, 2010. 94(8): p. 1412-1420.
41. Li, C.-Y., F.N.I. Sari, and J.-M. Ting, Reactive magnetron sputter-deposited TiNxOy multilayered solar selective coatings. Solar Energy, 2019. 181: p. 178-186.
42. Bellardita, M., et al., Preparation of Catalysts and Photocatalysts Used for Similar Processes, in Heterogeneous Photocatalysis. 2019, Elsevier. p. 25-56.
43. Li, K., et al., Preparation of AlN thin films for film bulk acoustic resonator application by radio frequency sputtering. Journal of Zhejiang University-Science A, 2009. 10(3): p. 464-470.
44. Chapman, B.N., Glow discharge processes: sputtering and plasma etching. 1980: Wiley.
45. Thornton, J.A., The microstructure of sputter‐deposited coatings. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1986. 4(6): p. 3059-3065.
46. Goldstein, J.I., et al., Scanning electron microscopy and X-ray microanalysis. 2017: Springer.
47. Inkson, B., Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization, in Materials characterization using nondestructive evaluation (NDE) methods. 2016, Elsevier. p. 17-43.
48. Horwat, D. and A. Billard, Effects of substrate position and oxygen gas flow rate on the properties of ZnO: Al films prepared by reactive co-sputtering. Thin Solid Films, 2007. 515(13): p. 5444-5448.
49. Kumar, N., et al., Microstructure and phase composition dependent tribological properties of TiC/aC nanocomposite thin films. Surface and Coatings Technology, 2014. 258: p. 557-565.
50. Soldán, J. and J. Musil, Structure and mechanical properties of DC magnetron sputtered TiC/Cu films. Vacuum, 2006. 81(4): p. 531-538.
51. Sánchez-López, J.C., et al., Tribological behaviour of titanium carbide/amorphous carbon nanocomposite coatings: from macro to the micro-scale. Surface and Coatings Technology, 2008. 202(16): p. 4011-4018.
52. Djafer, A.Z.A., et al., Deposition and characterization of titanium carbide thin films by magnetron sputtering using Ti and TiC targets. Applied surface science, 2014. 312: p. 57-62.
53. Jackson, A.W., et al., Amorphous and nanocrystalline titanium nitride and carbonitride materials obtained by solution phase ammonolysis of Ti (NMe2) 4. Journal of Solid State Chemistry, 2006. 179(5): p. 1383-1393.
54. Dreiling, I., D. Stiens, and T. Chassé, Raman spectroscopy investigations of TiBxCyNz coatings deposited by low pressure chemical vapor deposition. Surface and Coatings Technology, 2010. 205(5): p. 1339-1344.
55. Trotter, D. and A. Sievers, Spectral selectivity of high-temperature solar absorbers. Applied optics, 1980. 19(5): p. 711-728.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw