進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2808202014370700
論文名稱(中文) 對流層雷暴系統對電離層變動的影響分析
論文名稱(英文) Analysis of Thunderstorm Effects on the Variability of Ionosphere
校院名稱 成功大學
系所名稱(中) 太空與電漿科學研究所
系所名稱(英) Institute of Space and Plasma Sciences
學年度 108
學期 2
出版年 109
研究生(中文) 林昱丞
研究生(英文) Yu-Cheng Lin
學號 LA6074025
學位類別 碩士
語文別 中文
論文頁數 57頁
口試委員 指導教授-陳炳志
口試委員-蘇漢宗
口試委員-林建宏
中文關鍵字 WWLLN  閃電  電離層  福爾摩沙衛星三號 
英文關鍵字 WWLLN  Lightning  Ionosphere  COSMIC 
學科別分類
中文摘要 以往的研究顯示,位於對流層的雷暴現象會改變電離層的電子濃度,已知的影響途徑可以分為四種,分別是大氣對流造成的重力波、準靜電場的改變、電磁脈衝以及巨大噴流形成的電路導通。這四種路徑的作用時間、作用高度、作用範圍都不同。因此,可以透過觀察閃電上方電離層電子濃度的改變來瞭解閃電影響電離層的過程。但是閃電的發生難以預測,因此對於雷暴上方電離層濃度變化的研究也相對的困難。
在本研究中結合了全球閃電定位網(World Wide Lightning Location Network, WWLLN)雲對地的閃電資料與福爾摩沙衛星三號電離層電子濃度剖面資料,嘗試探索單位時間、空間中,含有大量閃電事件發生的閃電叢(Lightning clusters)上方的電子濃度變異。本論文根據資料發展了高效能的演算法分析2006~2018年間WWLLN的全球落雷事件記錄,篩選出了雷暴活動強烈的時空點,並且根據上述雷暴密集時間與空間資訊搜尋最接近的福衛三號所觀測的電離層電子濃度剖面。透過比較雷暴期間與寧靜期的電子濃度差異,可以進一步的分析雷暴密集地區上空的電子濃度隨高度的分布與雷暴發生的時間與地點的關聯性,以及上述四種雷暴影響電離層路徑的作用關係。
英文摘要 Previous literature studies show that the thunderstorm generating in the troposphere is capable to disturb the electron density in the ionosphere. There are four possible disturbing approaches are considered. The contribution of these processes can be explored by investigating the variation of the ionospheric electron density above thunderstorm regions at their active time.
In this work, WWLLN lightning data and the total electron content (TEC) profiles observed by COSMIC are employed to explore the electron density variation above thunderstorms at their active time. An efficient algorithm is developed to identify lightning clusters by WWLLN lightning events recorded from 2006 to 2018. Furthermore, the corresponding electron density profiles with appropriate spatial and temporal interval were extracted from the COSMIC database to examine the discrepancy respected to the density profiles at quiet time. Therefore, the variations of the ionospheric electron density caused by lightning can be assessed quantitatively in time, space and height.
By comparing both of lightning-active and lightning-quiescent ionospheric electron density profiles. It indicates that TEC in the ionosphere was significantly elevated by lightning in a short time of 30 minutes. Taking the time delay between lightning activity and ionosphere disturbance as well as the altitude where TEC was significantly boosted into account. The approaches that lightning disturb ionosphere seems to favor the process of electromagnetic pulses (EMP).
論文目次 摘要 III
EXTENDED ABSTRACT IV
致謝 IX
第1章 緒論 1
1.1 對流層中的雷暴現象 1
1.2 電離層簡介 5
1.3 電離層與雷暴間的交互作用 8
1.4 研究動機與方法 14
第2章 科學資料介紹 16
2.1 全球閃電定位系統(WWLLN) 16
2.2 福爾摩沙衛星三號與電波掩星觀測技術 20
第3章 科學資料的處理方法 24
3.1 閃電叢 25
3.2 閃電叢的搜尋樹演算法 28
3.3 受雷暴影響的福衛三號電離層剖面資料之篩選 33
第4章 分析結果與討論 36
4.1 不同當地時間與磁緯度下的電離層電子濃度差異 36
4.1.1 不同當地時間下受雷暴影響的電子濃度剖面 37
4.1.2 不同磁緯度下受雷暴影響的電子濃度剖面 40
4.2 全球各區受雷暴影響的電子濃度剖面 43
4.3 分析與討論 46
第5章 結論與未來研究方向 47
5.1 結論 47
5.2 未來研究方向 48
參考文獻 50

參考文獻 1. Abarca, S. F., Corbosiero, K. L., Galarneau, T. J., (2010), An evaluation of the worldwide lightning location network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth, Journal of Geophysical Research., 115, D18206.
2. Abram, R. J., et al., (2006), Performance Assessment of the World Wide Lightning Location Network (WWLLN), Using the Los Alamos Sferic Array (LASA) as Ground Truth, Journal. Atmos. Oceanic Technol., (2006) 23 (8), 1082.
3. Burgesser, R. E., (2017), Assessment of the World Wide Lightning Location Network (WWLLN) detection efficiency by comparison to the Lightning Imaging Sensor (LIS). Quarterly Journal of the Royal Meteorological Society, 143(708), 2809.
4. Chen, A. B., et al., (2008), Global distributions and occurrence rates of transient luminous events, Journal of Geophysical Research, 113, A08306.
5. Chen, A. B., Su, H. T., Hsu, R. R., (2014), Energetics and geographic distribution of elve-producing discharges, Journal of Geophysical Research., Space Physics 119(2).
6. Cheng, Z., et al., (2007), Broadband very low frequency measurement of D region ionospheric perturbations caused by lightning electromagnetic pulses, Journal of Geophysical Research., 112(A6).
7. Chou, M. Y., et al., (2017), Medium-scale traveling ionospheric disturbances triggered by Super Typhoon Nepartak, Geophysical Research Letters., 44, 7569.
8. Chou, M. Y., et al., (2018), Gigantic circular shock acoustic waves in the ionosphere triggered by the launch of FORMOSAT-5 satellite, Space Weather, Journal of Geophysical Research.
9. Christian, H. J., et al., (2003). Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. Journal of Geophysical Research, 108(D1), 4005.
10. Dowden, R. L., Brundell, J. B., Improvements relating to the location of lightning discharges, Australian Patent Office, patent number AU 200071483 Al.
11. Fukunishi, H., et al., (1996), Elves: Lightning-induced transient luminous events in the lower ionosphere, Geophysical Research Letters, 23, 2157.
12. Goodman, J. M., (2005), Space Weather & Telecommunications, ISBM 0-387-23670-8, The Springer International Series in Engineering and Computer Science, 178.
13. Inan, U. S., Rodriguez, J. V., Idone, V. P., (1993), VLF signatures of lightning‐induced heating and ionization of the nighttime D‐region, Geophysical Research Letters, 20(21), 2355.
14. Krehbiel, P. R. (1986), The electrical structure of thunderstorms in the earths electrical environment, pp. 90, Washington, DC, National Academy Press.
15. Kelley, M. C. (2009), The Earth's Ionosphere Plasma Physics and Electrodynamics, second edition, ISBN 978-0-12-088425-4, Elsevier Academy Press.
16. Kumar, S., et al., (2017), Thunderstorm‐/lightning‐induced ionospheric perturbation: An observation from equatorial and low‐latitude stations around Hong Kong, Journal of Geophysical Research, 122, 9032.
17. Lay, E. H., et al., (2004), WWLLN global lightning detection system: Regional validation study in Brazil, Geophysical Research Letters, 31, L03102,
18. Lay, E. H., et al., (2007), Local time variation in land/ocean lightning count rates as measured by the World Wide Lightning Location Network, Journal of Geophysical Research, 112, D13111.
19. Lay, E. H., et al., (2010), Temporal‐spatial modeling of electron density enhancement due to successive lightning strokes, Journal of Geophysical Research, 115, A00E59,
20. Lay, E. H., Shao, X. M., (2011), High temporal and spatial‐resolution detection of D‐layer fluctuations by using time‐domain lightning waveforms, Journal of Geophysical Research, 116, A01317,
21. Lay, E. H., Shao, X.‐M., Shao, C. S. Carrion, (2013), Variation in total electron content above large thunderstorms, Geophysical Research Letters, 40, 1945–1949.
22. Liu, J.Y., et al., Seismo-Traveling Ionospheric Disturbances Triggered by the 12 May 2008 M 8.0 Wenchuan Earthquake, Terrestrial Atmospheric and Oceanic Sciences , 2012;23:9-15.
23. Mika, A., et al., Early VLF perturbations observed in association with elves, Annales Geophysicae, 24, 2179.
24. Orville, R. E., Development of the National Lightning Detection Network, (2008) American Meteorological Society, (2008) 89 (2): 180.
25. Pasko, V. P., Inan, U. S., Bell, T. F., (1996), Sprites as luminous columns of ionization produced by quasi-electrostatic thundercloud fields, Geophysical Research Letters, 23, 649.
26. Peng, K. M., et al., (2018), Triangulation and Coupling of Gigantic Jets Near the Lower Ionosphere Altitudes, Journal of Geophysical Research, 123, 8.
27. Poelman, D. R., (2012) Performance Characteristics of Distinct Lightning Detection Networks Covering Belgium, Journal of Atmospheric And Oceanic Technology, 30, 942.
28. Rudlosky, D. S., Peterson, J., Kahn, D. T., (2017), GLD360 Performance Relative to TRMM LIS, Journal of Atmospheric and Oceanic Technology, 34 (6): 1307.
29. Sentman, D. D., et al., (1995), Preliminary results from the Sprites94 campaign: Red sprites, Geophysical Research Letters., 22, 1205-1208.
30. Su, H. T., et al., (2003), Gigantic jets between a thundercloud and the ionosphere, Nature, 423(6943), 974.
31. Su, H. T., et al., (2004), Global distribution of TLEs based on the preliminary ISUAL data, AGU Fall Meeting Abstracts, AE51A-03
32. Tsai, H. F., et al., Tracking the epicenter and the tsunami origin with GPS ionosphere observation, Earth Planets and Space, 2011;63:859-62.
33. Williams, E. R., (2005), Lightning and climate: A review, Atmospheric Research, 76, 272.
34. 陳泰然、周鴻祺、黃心怡及楊進賢,2011。台灣梅雨季弓形回波(Bow Echo)之結構與演變,大氣科學,39,177-200。
35. 美國華盛頓大學WWLLN研究團隊 : http://wwlln.net
36. 國家實驗研究院國家太空中心: http://www.nspo.narl.org.tw
37. 成功大學物理系紅色精靈研究團隊: http://sprite.phys.ncku.edu.tw
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw