進階搜尋


下載電子全文  
系統識別號 U0026-2808202011151100
論文名稱(中文) 應用WRF耦合CFD對於因氣流流過蘭嶼地形產生之大氣紊流模擬分析
論文名稱(英文) WRF-CFD Coupled Modeling Terrain-Induced Turbulence over Orchid Island
校院名稱 成功大學
系所名稱(中) 民航研究所
系所名稱(英) Institute of Civil Aviation
學年度 108
學期 2
出版年 109
研究生(中文) 李承祐
研究生(英文) Cheng-Yu Lee
電子信箱 ivanlee552@yahoo.com.tw
學號 Q46071019
學位類別 碩士
語文別 英文
論文頁數 116頁
口試委員 指導教授-苗君易
共同指導教授-宋偉國
口試委員-呂宗行
口試委員-曾建洲
口試委員-蔡原祥
中文關鍵字 風切  因地形產生之紊流  WRF  CFD 
英文關鍵字 Wind Shear  Turbulence Induced by Terrains  WRF  CFD 
學科別分類
中文摘要 在民航安全史上,低空風切一直是飛航安全之一危害,在都普勒地面氣象雷達發展安裝後,含較多水氣之風切所造成之危害已明顯降低,然而純粹因地形產生之風切仍是影響航空安全之一顯著因素,本研究將結合WRF大氣模擬數據與CFD,WRF可提供較完整之大氣狀態作為CFD之初始條件,而CFD對於地形模型解析更具優勢,故本研究結合以上兩者進行蘭嶼島與其機場附近之環境進行大氣模擬,以了解位於蘭嶼機場附近空域之氣流對於飛行安全上之影響。

本研究以NA-706當天之大氣情況為例先進行WRF模擬,再以探空觀測資料驗證WRF模擬結果,確保模擬結果趨於真實情況。再者,利用BPI (Block Polynomial Interpolation) 方法將WRF模擬結果鑲嵌入CFD地形模型中作為其初始條件。CFD模擬將分為穩態模擬與LES非穩態模擬兩部分進行分析,先以穩態模擬了解蘭嶼機場附近空域紊流情況,再以LES模擬隨時間變化之大氣狀態。

基於上述之模擬結果,可發現冬季東北季風以持續高強度之風速吹拂,對於蘭嶼所產生之風切以空間分布的水平風切最為顯著,而非以時間變化為主。冬季蘭嶼機場位於山丘之背風側,故其風速相較於附近海面較低,因此其附近空域所產生之風切強度相對較大,此結果可利用風切強度之計算公式與渦度大小進行驗證。最後本研究繪出機場附近空域渦流產生之位置,與其隨時間變化之位置移動,藉由觀察渦流位置可了解附近之大氣紊流特性。
英文摘要 In aviation safety history, the wind shear and clear turbulence are always the hazards in flight safety. In some cases, turbulences contain little moisture. Therefore, the Doppler radars are difficult to detect. In viewing of the advantage of using CFD method, this research focuses on wind shear or turbulence caused by airflow over the complex terrain. Furthermore, taking the accident of NA-706 as an example to explore the turbulence near Lanyu airport in the season which prevailed the north-east monsoon. In this work, first metrological simulation using WRF was performed to provide the data for CFD boundary condition. By utilizing BPI (Block Polynomial Interpolation) method to couple WRF to FLUENT, the results by CFD simulation was capable of providing more flow features near the terrain than merely utilizing uniform flow, log-law wind profile, or other methods. With the CFD simulation results, the research efforts were orientated to study the following three subjects. First, confirming the wind velocity variation and its influence on the flight route of NA-706. Second, identifying the intensity of wind shear which caused by the terrain of the Orchid island by several criteria. Finally, discussing of the potential hazard of the turbulent eddies location which might be produced in the season of north-east monsoon that has impacted on civil aviation flight route at Lanyu airport.
論文目次 Abstract--------------------------------------------------------------------------------------------------I
Table of Contents-------------------------------------------------------------------------------------IV
List of Figures----------------------------------------------------------------------------------------VII
List of Tables----------------------------------------------------------------------------------------XIII
Nomenclature---------------------------------------------------------------------------------------XIV

Chapter 1 Introduction------------------------------------------------------------1

1.1 Introduction---------------------------------------------------------------------------------- 1
1.2 Literature Review----------------------------------------------------------------------------2
1.2.1 Wind Shear---------------------------------------------------------------------------5
1.2.2 Calculation of Wind Shear Level--------------------------------------------------6
1.3 Motivation - Aviation Safety Issue--------------------------------------------------------9
1.4 Climate in Orchid Island------------------------------------------------------------------11
1.5 Objective------------------------------------------------------------------------------------14

Chapter 2 Methodology----------------------------------------------------------15

2.1 Research Procedures-----------------------------------------------------------------------15
2.2 WRF Model---------------------------------------------------------------------------------17
2.2.1 Theory-------------------------------------------------------------------------------17
2.2.2 WRF Simulation Setup------------------------------------------------------------19
2.3 WRFDA (WRF Data Assimilation) -----------------------------------------------------22
2.4 Geometry Model Establishment----------------------------------------------------------23
2.5 Meshing Details and Computation Domain--------------------------------------------26
2.6 Computation Fluid Dynamics (CFD)----------------------------------------------------30
2.6.1 Governing Equation---------------------------------------------------------------30
2.6.2 Turbulence Model------------------------------------------------------------------31
2.6.3 Boundary Condition---------------------------------------------------------------33
2.6.3.1 Velocity Inlet Condition---------------------------------------------------33
2.6.3.2 Pressure Outlet Condition ------------------------------------------------34
2.6.3.3 Wall Condition -------------------------------------------------------------35
2.6.3.4 Zero Gradient Condition -------------------------------------------------35
2.6.4 Transient State----------------------------------------------------------------------36

Chapter 3 Simulation Results---------------------------------------------------37

3.1 WRF Simulation Results------------------------------------------------------------------37
3.1.1 Analysis of WRF Simulation Results-------------------------------------------38
3.1.2 The method of Coupling WRF to Fluent---------------------------------------44
3.2 Fluent Simulation Results-----------------------------------------------------------------47
3.2.1 Uniform Flow as the Inlet Condition--------------------------------------------47
3.2.2 Coupled with WRF Model Case Simulation Results--------------------------54
3.2.3 LES Case Simulation Results----------------------------------------------------69
3.3 CFD Simulation for South-West Case---------------------------------------------------83
3.4 Aviation Safety Analysis by CFD Results----------------------------------------------87

Chapter 4 Conclusions and Recommendations------------------------------95

4.1 Conclusions---------------------------------------------------------------------------------95
4.2 Recommendations-------------------------------------------------------------------------97

Reference-----------------------------------------------------------------------------99

Appendix A WRF Models---------------------------------------------------------108
Appendix B Turbulence Models-------------------------------------------------111
Appendix C Videos of LES Simulation-----------------------------------------116
參考文獻 [1] Federal Aviation Administration (FAA), Aviation Safety Information Analysis and Sharing, “Weather-Related Aviation Accident Study 2003-2007,” February 2, 2010
[2] S. Thabet and T. H. Thabit, “CFD Simulation of the Air Flow around a Car Model (Ahmed Body),” International Journal of Scientific and Research Publications, vol. 8, no. 7, pp. 517-525, July 2018.
[3] B. Blocken, T. Druenen, Y. Toparlar, F. Malizia, P. Mannion, T. Andrianne, T. Marchal, G. Maas, and J. Diepens, “Aerodynamic Drag in Cycling Pelotons: New Insights by CFD Simulation and Wind Tunnel Testing,” Journal of Wind Engineering & Industrial Aerodynamics, vol. 179, pp. 319-337, 2018.
[4] X. Gu, P. D. Ciampa, and B. Nagel, “An Automated CFD Analysis Workflow in Overall Aircraft Design Applications,” CEAS Aeronautical Journal volume, vol. 9, pp. 3-13, 2018.
[5] A. N. Moraiti, D. P. Margaris, and N. A. Panopoulos, “CFD Modelling of Air Pollution Motion Inside A Building Block,” IC-SCCE Athens, vol. 7, 2016.
[6] G. Triscone, N. Abdennadher, C. Balistreri, O. Donzé, D. Greco, P. Haas, H. Haas-Peköz, T. Mohamed-Nour, P. Munier, P. Pontelandolfo, R. Putzu, J. Richard, H. Sthioul, N. Delley, D. Choffat, E. Niederhäuser, Roger Schaer, Henning Müller, J. Decaix, S. Richard, C. Münch-Alligné, P. Kunz, and F. Despot, “Computational Fluid Dynamics As A Tool To Predict The Air Pollution Dispersion in a Neighborhood – A Research Project to Improve the Quality of Life in Cities,” Int. J. Sus. Dev. Plann., vol. 11, no. 4, pp. 546-557, 2016.
[7] B. Sanderse, S.P. van der Pijl, and B. Koren, “Review of Computational Fluid Dynamics for Wind Turbine Wake Aerodynamics,” J. Wind Eng., vol. 14, no. 7, pp. 799-819, 2011.
[8] T. Uchida, “Computational Fluid Dynamics Approach to Predict the Actual Wind Speed over Complex Terrain,” Energies, vol. 11, no. 7, 2018.
[9] J. Yue, S. Wu, and F. Xu, “Modelling of a CFD Microscale Model and Its Application in Wind Energy Resource Assessment,” ICMIT MATEC Web of Conferences, vol. 70, no. 12004, 2016.
[10] M. V. Tabib, A. Rasheed, and T. Kvamsdal, “High-Resolution CFD Modelling and Prediction of Terrain-Induced Wind Shear and Turbulence for Aviation Safety,” National Conference on Computational Mechanics, 10th, pp.324-341, 2019.
[11] N. Hussen and A. Khalidy, “Building Generated Wind Shear and Turbulence Prediction utilizing Computational Fluid Dynamics,” Wseas Transactions on Fluid Mechanics, vol. 13, pp. 126-135, 2018.
[12] L. Li, P. W. Chan, L. Zhang, and F. Hu, “Numerical Simulation of a Lee Wave Case over Three-Dimensional Mountainous Terrain under Strong Wind Condition,” Advances in Meteorology, vol. 505, 2013. [Online]. Available: http://dx.doi.org/10.1155/2013/304321 .
[13] J. Ehrhard, I. Khatib, C. Winkler, R. Kunz, N. Moussiopoulos, and G. Ernst, “The Microscale Model MIMO: Develop and Assessment,” J. Wind Eng., Ind., Aerod., vol. 85, pp. 163-176, 2000.
[14] Y. Han, L. Shen, G. Xu, C.S. Cal, P. Hu, and J. Zhang, “Multiscale Simulation of Wind Field on a Long-span Bridge Site in Mountainous Area,” Journal of Wind Engineering & Industrial Aerodynamics, vol. 177, pp.260-274, 2018.
[15] J. S. Duncan, “Pilot’s Handbook of Aeronautical Knowledge,” United States Department of Transportation, Federal Aviation Administration, Airman Testing Standards Branch, Oklahoma City, 2016.
[16] International Civil Aviation Organization (ICAO), “Manual on Low-level Wind Shear,” First Edition, 2005, pp.1-1-2-1.
[17] 蒲金標、徐茂林、游志遠、劉珍雲, “台灣低壓鋒面與松山機場低空風切個案研究,” 航空安全及管理季刊, 1卷, 3期, 頁227-243, 2014
[18] International Civil Aviation Organization (ICAO), and Steve Albersheim, “Wind Shear Information,” in Meteorological Warnings Study Group Fourth Meeting, pp.1-19, 2012.
[19] 蕭華、蒲金標, “大氣亂流,” 航空氣象學, 第四版, 台北市: 秀威資訊科技, 2008, 第十章, pp.115-142.
[20] J. Haby, “Calculating Wind Shear and Shear Vorticity.” [Online]. Available: https://www.theweatherprediction.com/habyhints/193/ .
[21] NOAA National Weather Service, “Turbulence,” Chapter 2. [Online]. Available: https://www.weather.gov/media/zhu/ZHU_Training_Page/turbulence_stuff/turbulence2/turbulence.pdf .
[22] NOAA National Weather Service, “Turbulence Help.” [Online]. Available: https://www.aviationweather.gov/turbulence/help?page=plot .
[23] A. R. Bohne, “Radar Detection of Turbulence in Thunderstorms,” FGL-TR-81-0102, Air Force Geophysics Laboratory, the U.S., Washington, D.C., 1981.
[24] V. M. Kumer, J. Reuder, M. Dorninger, R. Zauner, and V. Grubisic, “Turbulent Kinetic Energy Estimates from Profiling Wind LiDAR Measurements and Their Potential for Wind Energy Applications,” Renewable Energy, Vol. 99, pp. 898-910, 2016.
[25] F. Orrego, “Experimental and CFD Study of a Single-Phase Cone-Shaped Helical Coiled Heat Exchanger: An Empirical Correlation.” Proceedings of ECOS 2012 – The 25th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Perugia, Italy, 2012.
[26] Takeshi Ishihara, Kazuki Hibi, and Susumu Oikawa, “A Wind Tunnel Study of Turbulent Flow over a Three-Dimensional Steep Hill,” Journal of Wind Engineering, vol. 83, pp. 85-107.
[27] U.S. National Transportation Safety Board, “Aircraft Accident Report: Delta Airlines, Inc., Lockheed L-1011-385-1, N726DA, Dallas/Fort Worth- International Airport, Texas, National Transportation Safety Board, United States Government, 1985,” Washington, D.C, U.S., Rep. no. NTSB/AAR-86/05, 1985.
[28] F. Caracena, R. Ortiz, and J. A. Augustin, “The Crash of Delta Flight 191 at Dallas-Fort Worth International Airport on 2 August 1985: Multiscale Analysis of Weather Conditions,” NOAA, Washington, D.C, U.S., Rep. no. ERL 430-ESG 2, 1986.
[29] T. T. Fujita, “The Downburst: Microburst and Microburst,” SMRP Research Paper, vol. 210, 1985.
[30] J. W. Wilson and R. M. Wakimoto, “The Discovery of the Downburst: T. T. Fujita’s Contribution,” Bulletin of the American Meteorological Society, vol. 82, no.1, 2001.
[31] Taiwan Transportation Safety Board, “February 05, 2018, National Airborne Service Corps NA-706 Occurrence Accident Report”, R.O.C., Taipei City, TTSB-AOR-19-09-001, 2018. [Online]. Available: https://www.ttsb.gov.tw/media/3692/ttsb-aor-19-09-001.pdf .
[32] Data Bank for Atmospheric & Hydrologic Research, “Central Weather Bureau Satellite Image.” [Online]. Available: https://dbar.pccu.edu.tw/ .
[33] C. P. Pu, H.Y. Tseng, J. D. Tsai, J.S. Yang, and C.H. Kuo, “An Analysis on the Evolution of Northeastern Monsoon in the Eastern Taiwan,” Taiwan Central Weather Bureau Conference on Weather Analysis and Forecasting, pp. 261-266, 1998.
[34] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. Y. Huang, W. Wang, and J. G. Powers, “A Description of the Advanced Research WRF Version 3,” Mesoscale and Microscale Meteorology Division National Center for Atmospheric Research ,2008.
[35] Mesoscale and Microscale Meteorology Division National Center for Atmospheric Research, “ARW Version 3 Modeling System User’s Guild,” 2012.
[36] NCAR, and UCAR, “NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999”. [Online]. Available: https://rda.ucar.edu/datasets/ds083.2/#!description .
[37] S. Y. Hong, J. Dudhia, and S. H. Chen, “A Revised Approach to Ice Microphysical Process for the Bulk Parameterization of Clouds and Precipitation,” Mon. Wea. Rev., vol. 132, pp. 103-132, 2004.
[38] J. S. Kain., “The Kain-Fritsch Convective Parameterization: An Update.” J. Appl. Meteor., vol. 43, pp. 170–181, 2004.
[39] T. Wilson and R. Fovell, “Improvements in Modeling Persistent Fog,” Conference on Mountain Meteorology, 16th, San Diego, 2014.
[40] M. Nakanishi and H. Niino, “Development of an Improved Turbulence Closure Model for the Atmospheric Boundary Layer,” J. Meteor. Soc. Japan, vol. 87, pp. 895-912, 2009.
[41] Mellor and Yamada, “A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers.” J. Atmos. Sci., vol. 31, pp. 1791-1806, 1974.
[42] Mellor and Yamada, “Development of a Turbulence Closure Model for Geophysical Fluid Problems.” Rev. Geophys. Space Phys., vol. 20, pp. 851-875, 1982.
[43] A. E. Cohen, S. M. Cavallo, M. C. Coniglio, and H. E. Brooks, “A Review of Planetary Boundary Layer Parameterization Schemes and Their Sensitivity in Simulating Southeastern U.S. Cold Season Severe Weather Environments.” Weather and Forecasting, vol. 30, no. 3, 2015.
[44] S. Pattanayak, and U C Mohanty, “Development of Extended WRF Variational Data Assimilation System (WRFDA) for WRF Non-Hydrostatic Mesoscale Model,” J. Earth Syst. Sci., vol. 127, no. 48, 2018.
[45] X. Y. Huang, X. Zhang, T. Auligné, Z. Liu, S. R. Rizvi, Y. R. Guo, J. Ban, J. Liu, G. Descombes, H. Wang, M. Kavulich, R. Li, H. C. Lin, C. Schwartz, F. Gao, D. Xu, and K. Newman, “The 2012 WRFDA Overview,” 13th Annual WRF Users’ Workshop, Boulder Colorado, 2012.
[46] NCAR, and UCAR, “NCEP ADP Global Surface Observational Weather Data, October 1999 – continuing.” [Online]. Available: https://rda.ucar.edu/datasets/ds461.0/
[47] Taiwan government Ministry of the Interior. (2016) [Online]. Available: https://data.gov.tw/dataset/35430 .
[48] F. J, Hellsten , Schlünzen , K. Heinke Schlünzen, and B. Carissimo, “The COST 732 Best Practice Guideline for CFD Simulation of Flows in the Urban Environment: A summary” Int. J. Environment and Pollution, vol. 44, Nos., 2011.
[49] Y. Tominaga, A. Mochida, R. Yoshie, H. Kataoka, T. Nozu, M. Yoshikawa, and T. Shirasawa, “AIJ Guidelines for Practical Applications of CFD to Pedestrian Wind Environment Around Buildings,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 96, pp. 1749-1761, 2008.
[50] ANSYS INC., “Tetra Meshing” Fluent Theory Guild, 19 R2, 2019.
[51] D. R. Chapman, “Computational Aerodynamics Development and Outlook,” AIAA J., vol. 17, 1979.
[52] H. Choi and P. Moin, “Grid-Point Requirements for Large Eddy Simulation: Chapman’s Estimates Revisited,” Physics of Fluids, vol. 24, no. 1, 2012.
[53] ANSYS INC., “Continuity and Momentum Equation” Fluent Theory Guild, 19 R2, 2019.
[54] N. Sridhar, “Numerical Prediction of Wind Flow over Complex Terrain with Shallow and Steep Hills,” Ph.D. dissertation, Mechanical Engineering, Texas Tech University, Texas, 2015.
[55] N. A. Memon, V. R. Kondreddi, and K. J. Eidsvik, “Wind Resource Assessment in Complex Terrain Using CFD,” M.S. thesis, Department of Mechanical Engineering, Technical University of Denmark, Roskilde, 2005.
[56] F. M. Denaro, “Lecture on LES - Part I and II.” [Online]. Available: https://www.researchgate.net/publication/313280320_Lecture_on_LES_-_Part_I_and_II .
[57] C. H. Moeng, “A Large-Eddy-Simulation Model for the Study of Planetary Boundary-Layer Turbulence,” J. Atmos. Sci., vol. 41, no. 13, pp. 2052-2062, 1984.
[58] W. Rodi, “Comparison of LES and RANS Calculations of the Flow around Bluff Bodies,” Journal of wind engineering and industrial aerodynamics, vol. 69-71, pp 55-75, 1997.
[59] A. Bechmann, “Large-Eddy Simulation of Atmospheric Flow over Complex Terrain,” Ph.D. dissertation, Wind Energy Department, Technical University of Denmark, Roskilde, 2006.
[60] ANSYS INC., “Velocity Inlet Boundary Conditions,” Fluent User’s Guide, 19 R2, 2019.
[61] Fluent User Services Center, “Introductory FLUENT Notes FLUENT,” vol. 6.3, Dec. 2006. [Online]. Available: http://www.southampton.ac.uk/~nwb/lectures/GoodPracticeCFD/Articles/BCs_Fluent-v6.3.04.pdf
[62] ANSYS INC., “Pressure Outlet,” Fluent User’s Guide, 19 R2, 2019.
[63] J. Blazek, “Boundary Conditions,” in Computational Fluid Dynamics Principles and Applications, 3rd Edition, MA, USA: Elsevier Ltd., 2015, ch.8, pp.254-279.
[64] Data Bank for Atmospheric & Hydrologic Research, “Central Weather Bureau Weather Data.” [Online]. Available: https://dbar.pccu.edu.tw/ .
[65] Japan Meteorological Agency, “Weather Maps.” [Online]. Available: https://www.jma.go.jp/en/g3/ .
[66] L. Chena, K. Asai, T. Nonomura, G. Xi, and T. Liu, “A Review of Backward-Facing Step (BFS) Flow Mechanisms, Heat transfer and Control,” Thermal Science and Engineering Process, vol. 6, pp. 194-216, 2018.
[67] J. Haby, “Vorticity Basics.” [Online]. Available: https://www.weather.gov/source/zhu/ZHU_Training_Page/Miscellaneous/vorticity/vorticity.html?fbclid=IwAR2RPkD7U9FzzHpiFeMI2m9Vl1wh3BxqR3RL2RuiE_IVH-YfLHvG6KM_d00.
[68] R.O.C Civil Aeronautics Administration, “electronic Aeronautical Information Publication (eAIP).” [Online]. Available: http://eaip.caa.gov.tw/eaip/home.faces .
[69] M. Lehner, “Observations and Large-Eddy Simulations of the Thermally Driven Cross Basin Circulation in a Small, Closed Basin,” Ph.D. Thesis, University of Utah., 2012.
[70] B.E. Launder and B.I. Sharma, "Application of the Energy Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc," Letters in Heat and Mass Transfer, vol. 1, no. 2, pp. 131-138, 1974.
[71] ANSYS INC., “Standard k-epsilon model,” Fluent Theory Guild, 19 R2, 2019.
[72] CFD online, “Standard k-epsilon Model”, 2014. [Online]. Available: https://www.cfd-online.com/Wiki/Standard_k-epsilon_model .
[73] D. C. Wilcox, "Re-Assessment of the Scale-Determining Equation for Advanced Turbulence Models," AIAA Journal, vol. 26, no. 11, pp. 1299-1310, 1988.
[74] ANSYS INC., “Standard k-ω model,” Fluent Theory Guild, 19 R2, 2019.
[75] F. R. Menter, "Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows," AIAA, vol. 93-2906, 1993.
[76] ANSYS INC., “Shear-Stress Transport (SST) k-ω Model,” Fluent Theory Guild, 19 R2, 2019.
[77] ANSYS INC., “Large Eddy Simulation (LES),” Fluent Theory Guild, 19 R2, 2019.
[78] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A Dynamic Subgrid-Scale Eddy Viscosity Model,” Phys. Fluids, vol. A(3), no.7, pp. 1760-1765, July 1991
[79] CFD online, “Large eddy simulation (LES),” 2013. [Online]. Available: https://www.cfd-online.com/Wiki/Large_eddy_simulation_(LES)
[80] D. You, and P. Moin, “A Dynamic Global-Coefficient Subgrid-Scale Eddy-Viscosity Model for Large-Eddy Simulation in Complex Geometries,” Physics of Fluids, vol. 19, no. 6, pp. 41-53, 2007.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-02起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-09-02起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw