進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2808201911163900
論文名稱(中文) 應用碳化矽元件於全橋諧振轉換器之研製
論文名稱(英文) Design and Implementation of Full-Bridge Resonant Converter with SiC Devices
校院名稱 成功大學
系所名稱(中) 電機工程學系碩士在職專班
系所名稱(英) Department of Electrical Engineering (on the job class)
學年度 107
學期 2
出版年 108
研究生(中文) 陳證棍
研究生(英文) Cheng-Kun Chen
學號 N27011032
學位類別 碩士
語文別 中文
論文頁數 60頁
口試委員 指導教授-梁從主
口試委員-謝冠群
口試委員-李嘉猷
口試委員-鄭至焜
口試委員-張恩誌
中文關鍵字 直流-直流電源轉換器  碳化矽基開關  電池充電站 
英文關鍵字 DC-DC converters  SiC MOSFET  battery chargers 
學科別分類
中文摘要 本文主旨為研製一數位控制之隔離型諧振轉換器,此電路可應用於電動車電池充電站。電路架構為全橋諧振轉換器,提升系統之功率密度,並利用諧振電路之開關柔切特性,減少開關電壓應力並減少開關損耗以提高系統轉換效率,再利用碳化矽(SiC)功率開關元件以提高操作頻率。本文首先簡述常見之直流轉換器,並分析全橋諧振轉換器之動作原理、推導穩態電壓增益曲線及特性。最後,設計一輸入電壓範圍為380 V至420 V、輸出為48 V/3 kW之轉換器,以數位訊號處理器TMS320F28335控制全橋諧振轉換器實驗雛形,藉以驗證理論分析。驗證實際電路特性,實驗結果顯示,全橋諧振轉換器工作於50%負載時可達最高效率94.7%,工作於滿載效率達92.5%。
英文摘要 An isolated full-bridge resonant converter with digital signal control which is applied for battery charger of electric vehicle is designed and implemented in this thesis, apart from this, this resonant converter could also achieve soft switching to reduce switching losses, eliminate voltage stress across the power switches and further improve the system conversion efficiency. Main topology of proposed circuit is comprised of a full-bridge resonant converter used to raise system power density, and Silicon Carbide-based MOSFETs are applied in this converter for higher frequency applications. First, conventional resonant converters will be introduced. Also, the theoretical operating analysis of the proposed circuit will be discussed in detail, after that, the steady-state voltage-gain curves and characteristics will be derived. Finally, an experimental prototype with input voltage from 380 V to 420 V, rated power 3 kW and output voltage 48 V is designed and implemented, which is controlled by the digital signal processor TMS320F28335 for energy conversion control to validate the theoretical analysis. Finally, the results of experiment reveal that the maximum efficiency is 94.7% at 50% load and the efficiency of full load is 92.5%.
論文目次 摘 要 II
第一章 緒論 1
1.1 研究背景與目的 1
1.2 論文架構簡介 4
第二章 隔離型轉換器與碳化矽元件簡介 5
2.1 傳統隔離型轉換器簡介 5
2.2 具柔切特性之隔離型轉換器 10
2.2.1 全橋相移式轉換器 10
2.2.2 諧振轉換器介紹 12
2.3 碳化矽元件簡介 24
第三章 碳化矽元件應用於全橋諧振轉換器 26
3.1 SRC操作模式分析 27
3.2 LLC操作模式分析 33
3.3 碳化矽基開關驅動電路簡介 39
第四章 電路設計與實驗結果分析 41
4.1 轉換器系統規格與主要元件參數設計 42
4.2 實驗結果與討論 46
第五章 結論與未來研究方向 53
5.1 結論 53
5.2 未來研究方向 54
參考文獻 55
參考文獻 [1] M. Yilmaz and P. Krein, “Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-in Electric and Hybrid Vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, May 2013.
[2] TEVC-01, “Electric Vehicle Conductive Charging System Recommended Practice – part 1: Installation,” 1st Edition, 2011.
[3] M. Yilmaz and P. T. Krein, “Review of the Impact of Vehicle-to-Grid Technologies on Distribution Systems and Utility Interfaces,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5673-5689, 2013.
[4] F. C. Lee, “High-Frequency Quasi-Resonant and Multi-Resonant Converter Technologies,” in Proc. Conf. Ind. Electron. Society, vol. 3, pp. 24-28, 1988.
[5] J. Feng, Y. Hu, W. Chen, and C. C. Wen, “ZVS Analysis of Asymmetrical Half-Bridge Converter,” in Proc. Power Electron. Specialists Conf., vol. 1, pp. 243-247, 2001.
[6] B. R. Lin, H. K. Chiang, C. H. Tseng, and K. C. Chen “Analysis and Implementation of an Asymmetrical Half-Bridge Converter,” in Proc. International Conf. Power Electron. and Drives Sys., vol. 1, pp. 407-412, 2005
[7] C. M. Wang, “A new family of Zero-Current-Switching (ZCS) PWM Converters,” IEEE Trans. Ind. Electron., vol. 52, no. 4, pp. 1117-1125, 2005.
[8] J. Y. Huang, L. S. Yang, T. J. Liang, J. F. Chen, and M. Y. Cheng, “Design and Analysis of Interleaved Forward Quasi-Resonant Converters with Zero Current Switching,” in Proc. Applied Power Electron. Conf. and Expo., pp. 1464-1468, 2009.
[9] T. J. Liang, M. H. Cheng, W. Y. Huang, and W. J. Tseng, “Interleaved Half-Bridge Flyback Converter with Zero-Current Switching,” IEEE Trans. Power Electron., Vol. 34, No. 4, pp. 3370-3383, 2019.
[10] J. Hou, “Design Procedure for LLC Resonant Converter,” M.S. Thesis, Dept. Electrical Engineering, National Taiwan University, Taipei, Taiwan, Jun. 2009.
[11] Y. C. Chen, “Design and Implementation of LLC Resonant Converter,” M.S. Thesis, Dept. Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, Jun. 2009.
[12] G. Ivensky, S. Bronshtein, and A. Abramovitz, “Approximate Analysis of Resonant LLC DC-DC Converter,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3274-3284, 2011.
[13] W. Y. Feng, P. Mattavelli, and F. C. Lee, “Pulse-Width Locked Loop (PWLL) for Automatic Resonant Frequency Tracking in LLC DC–DC Transformer (LLC -DCX),” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1862-1869, 2013.
[14] C. H. Liang and T. J. Liang, “Design and Implementation of Interleaved LLC Half-Bridge Resonant converters,” in Proc. International Power Electron. and Appli. Conf. and Expo., pp. 1509-1512, 2014.
[15] G. Pensl, H. Morkoc, B. Monemar, and E. Janzen, “Silicon Carbide, III-Nitrides, and Related Materials,” Materials Science Forum, vol. 264-268, pp. 0-4, 1998.
[16] T. Ayalew, “SiC Semiconductor Devices Technology, Modeling, and Simulation,” Vienna University of Technology Faculty of Electrical Engineering and Information Technology, 2004.
[17] K. H. Chen and T. J. Liang, “Design of Quasi-resonant Flyback Converter control IC with DCM and CCM operation,” in Proc. International Power Electron. Conf., pp. 2750-2753, 2014.
[18] Y. J. Lu, T. J. Liang, C. H. Lin, and K. H. Chen, “Design and Implementation of a Bidirectional DC-DC Forward/Flyback Converter with Leakage Energy Recycled,” in Proc. Asian Conf. on Energy, Power and Transporta. Electrification, pp. 1-6, 2017.
[19] Q. Li, F. C. Lee, and M. M. Jovanovic, “Design Considerations of Transformer DC Bias of Forward Converter with Active-Clamp Reset,” in Proc. Applied Power Electron. Conf. and Expo., pp. 553-559, 1999.
[20] W. C. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, “Current-Fed DC-DC Converter with ZCS for High Voltage Applications,” in Proc. International Power Electron. Conf., pp.58-62, 2010.
[21] X. Xu, A. M. Khambadkone, T. M. Leong, and R. Oruganti, “A 1-MHz Zero-Voltage-Switching Asymmetrical Half-Bridge DC/DC Converter: Analysis and Design,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 105-113, 2006.
[22] R. Y. Chen, T. J. Liang, J. F. Chen, R. L. Lin, and K. C. Tseng, “Study and Implementation of a Current-Fed Full-bridge Boost DC–DC Converter with Zero-Current Switching for High-Voltage Applications,” IEEE Trans. Ind. Applications, vol. 44, no. 4, pp.1218-1226, 2008.
[23] B. Zhao, Q. Yu, and W. Sun, “Extended-Phase-Shift Control of Isolated Bidirectional DC-DC Converter for Power Distribution in Microgrid,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4667-4680, 2012.
[24] C. M. Wang, Y. N. Wang, and C. H. Yang, “A New ZVS-PWM Full-Bridge Step-up/down Converter,” in Proc. IECON, vol. 1, pp. 908-913, 2004.
[25] B. Whitaker, A. Barkley, Z. Cole, B. Passmore, D. Martin, T. R. McNutt, A. B. Lostetter, J. S. Lee, and K. Shiozaki, “A High-Density, High-Efficiency, Isolated On-Board Vehicle Battery Charger Utilizing Silicon Carbide Power Devices,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2606-2617, 2014.
[26] R. L. Steigerwald, “A Comparison of Half-Bridge Resonant Converter Topologies,” IEEE Trans. Power Electron., vol. 3, no. 2, pp. 174-182, 1988.
[27] S. L. Tian, F. C. Lee, and Q, Li, “A Simplified Equivalent Circuit Model of Series Resonant Converter,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3922-3932, 2016.
[28] B. Y. Chen and Y. S. Lai, “Switching Control Technique of Phase-Shift Controlled Full-Bridge Converter to Improve Efficiency Under Light-Load and Standby Conditions Without Additional Auxiliary Components,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 1001-1012, 2010.
[29] Z. Q. Xi, S. Wang, P. Shen, W. W. Xiong, and W. C. Huang, “Analysis of Phase-Shift Full Bridge ZVZCS Converter,” in Proc. Asia-Pacific Power and Energy Engineering Conf., pp. 1-4, 2011.
[30] Y. Gao, and M. Yang, “Design and Simulation of ZVZCS Phase-Shifted Full-Bridge PWM Converter,” in Proc. International Symposium on Computer, Consumer and Control, pp. 923-925, 2016.
[31] Q. Zhang, “Phase-Shifted Full-Bridge Converter with ZVZCS for Adjustable Output Voltage,” International Telecom. Energy Conf., pp. 1-6, 2003.
[32] B. Lu, W. Liu, L. Yan, F. C. Lee, and J. D. van Wyk, “Optimal Design Methodology for LLC Resonant Converter,” in Proc. Applied Power Electron. Conf. and Expo., pp. 533-538, 2006.
[33] H. Huang, “Design an LLC Resonant Half-Bridge Power Converter,” Texas Instruments Power Supply Design Seminar SEM1900, topic 3, TI literature no. SLUP263, 2010.
[34] S. Abdel-Rahman, “Resonant LLC Converter: Operation and Design,” Infineon Technology Application Note, AN 2012-09, 2012.
[35] R. Y. Yu, G. K. Y. Ho, B. M. H. Pong, B. W. K. Ling, and J. Lam, “Computer-Aided Design and Optimization of High-Efficiency LLC Series Resonant Converter,” IEEE Trans. Power Electron., vol. 27, no.7, pp. 3243-3256, 2012.
[36] G. C. Hsieh, C. Y. Tsai, and S. H. Hsieh, “Design considerations for a Half-Bridge LLC Resonant Converter,” in Proc. International Conf. on Ind. Technology, pp. 731-736, 2007.
[37] R. L. Lin and C. W. Lin, “Design Criteria for Resonant Tank of LLC DC-DC Resonant Converter,” in Proc. Conf. on IEEE Ind. Electron. Society, 2010.
[38] H. Huang, “FHA-Based Voltage Gain Function with Harmonic Compensation for LLC Resonant Converter,” in Proc. Applied Power Electron. Conf. and Expo., pp. 1770-1777, 2010.
[39] T. Duerbaum, “First Harmonic Approximation including Design Constraints,” in Proc. International Telecom. Energy Conf., pp. 321-328, 1998.
[40] B. J. Baliga, “Trends in Power Semiconductor Devices,” IEEE Trans. Electron. Devices, vol. 43, no. 10, pp. 1717-1731, 1996.
[41] T. Kim, M. Jang, and V. G. Agelidis, “Comparative Thermal Performance Evaluation of SiC MOSFETs and Si MOSFET for 1.2 kW 300 kHz DC-DC boost converter as a solar PV pre-regulator,” in Proc. International Power Electron. Conf., vol. 90, no. 6, 2002.
[42] S. Sabri, E. V. Brunt, A. Barkley, B. Hull, M. O'Loughlin, A. Burk, S. Allen, and J. Palmour, “New Generation 6.5 kV SiC Power MOSFET,” in Proc. Workshop on Wide Bandgap Power Devices and Applications, pp. 246-250, 2017.
[43] J. A. Cooper, M. R. Melloch, R. Singh, A. Agarwal, and J.W. Palmour, “Status and Prospects for SiC Power MOSFETs,” IEEE Trans. Electron Devices, vol. 49, no. 4, pp. 658-664, 2002.
[44] J. A. Cooper, and A. Agarwal, “SiC Power-Switching Devices-The Second Electronics Revolution,” in Proc. IEEE, vol. 90, no. 6, pp. 956-968, 2002.
[45] B. J. Baliga, “Fundamentals of Power Semiconductor Devices,” Sringer, 2nd Edition, 2019.
[46] Z. Chen, “Research on Performance Comparisons of SiC MOSFET CoolMOS and Si MOSFET Based on HB Double-Sided LCC Resonant network,” Ph.D. dissertation, Dept. Electrical Engineering, faculty of the Virginia Polytechnic Institute and State University, Blacksburg, Virginia, September, 2013.
[47] X. T. Zhou, Y. P. Jia, D. Q. Hu, and Y. Wu, “A Simulation-Based Comparison Between Si and SiC MOSFETs on Single-Event Burnout Susceptibility,” IEEE Trans. Electron. Devices, vol. 66, no. 6, pp. 2551-2556, 2019.
[48] M. Domeij, J. Franchi, B. Buono, K. W. Lee, K. S. Park, C. S. Choi, S. Sunkari, and H. Das, “Avalanche Rugged 1200 V 80 mΩ SiC MOSFETs with state-of-the-art Threshold Voltage Stability,” in Proc. Workshop on Wide Bandgap Power Devices and Applications, 2018.
[49] S. M. Sze, “Semiconductor Devices: Physics and Technology,” John Wiley Sons, Inc., 2nd Edition, 2002.
[50] L. Fursin, X. Li, Z. Li, M. O'Grady, W. Simon, and A. Bhalla “Reliability aspects of 1200V and 3300V Silicon Carbide MOSFETs,” in Proc. Workshop on Wide Bandgap Power Devices and Applications, pp. 73-377, 2017.
[51] M. Bhatnagar and B. J. Baliga, “Comparison of 6H-SiC, 3C-SiC, and Si for Power Devices,” IEEE Trans. Electron. Devices, vol. 40, no. 3, pp. 645-655, 1993.
[52] J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, and J. Rebollo, “A Survey of Wide Bandgap Power Semiconductor Devices,” IEEE Trans. Power Electron., vol. 29, no. 5 pp. 2155-2163, 2014.
[53] R. Kosugi, S. Suzuki, M. Okamoto, S. Harada, J. Senzaki, and K. Fukuda, “Strong Dependence of the Inversion Mobility of 4H and 6H SiC(0001) MOSFETs on the Water Content in Pyrogenic Re-Oxidation Annealing,”, IEEE Electron. Device Letters, vol.23, no.3, pp. 136-138, 2002.
[54] A. K. Agarwal, S. Seshadri, and L.B. Rowland, “Temperature Dependence of Fowler-Nordheim Current in 6H- and 4H-SiC MOS Capacitors,” IEEE Electron. Device Letters, vol. 18, no 12, pp.592-594, 1997.
[55] Infineon Technologies, “IPW90R120C3 Datasheet,” CoolMOS Power Tran., Rev.2, Feb. 2010.
[56] STMicroelectronics, “STW40N90K5 Datasheet,” N-Channel Power Tran., Rev.2, 2016.
[57] CREE Technologies, “C3M0065090D Datasheet,” Silicon Carbide Power MOSFET, Rev.C, Aug. 2018.
[58] L. Abbatelli, C. Brusca, and G. Catalisano, “AN4671 Application Note,” Rev. 1, 2015.
[59] A. Dearien, “Gating Methods for High-Voltage Silicon Carbide Power MOSFETs,” M.S. thesis, University of Arkansas, 2018.
[60] D. Martin, W. A. Curbow, and T. McNutt, “Performance Analysis of a SiC MOSFET Half Bridge Power Module with a Miller Clamp,” in Proc. IWIPP, 2017.
[61] H. Chen and D. Divan, “High Speed Switching Issues of High Power Rated Silicon-Carbide Devices and the Mitigation Methods,” in Proc. Energy Conversion Congress and Expo., pp. 2254-2260. 2015.
[62] S. Jahdi, O. Alatise, J. A. O. Gonzalez, R. Bonyadi, L. Ran, and P. Mawby, “Temperature and Switching Rate Dependence of Crosstalk in Si-IGBT and SiC Power Modules,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 849-863, 2016.
[63] S. Yin, K. J. Tseng, C. F. Tong, R. Simanjorang, C. J. Gajanayak, A. Nawawi, Y. T. Liu, Y. Liu, K. Y. See, A. Sakanova, K. Men, and A. K. Gupta, “Gate Driver Optimization to Mitigate Shoot-through in High-speed Switching SiC Half Bridge Module,” in Proc. International Conf. on Power Electron. and Drive Systems, pp. 484-491, 2015.
[64] Z. Q. Wang, X. J. Shi, Y. Xue, L. M. Tolbert, F. Wang, and B. J. Blalock, “Design and Performance Evaluation of Overcurrent Protection Schemes for Silicon Carbide (SiC) Power MOSFETs,” IEEE Trans. Ind. Electron., vol. 61, no. 10, 2014.
[65] Texas Instruments, “TMS320F28335 Digital Signal Controllers (DSCs) Data Manual,” Sep. 2008.
[66] Silicon Labs, “Si827x Datasheet,” Rev.1.0, Feb. 2016.
[67] 梁適安, “交換式電源供應器之理論與實務設計,” 全華書局, 2011.
[68] 趙修科, “開關電源中磁性元器件,” 南京航空航天大學自動化學院, 2004.
[69] 吳義利, “切換式電源轉換器原理與實用技術設計,” 文笙書局, 2015.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw