系統識別號 U0026-2808201816494600
論文名稱(中文) A群鏈球菌引發肌肉細胞粒線體自噬以增加胞內細菌存活
論文名稱(英文) Group A Streptococcus-induced muscular mitophagy increases intracellular bacterial survival
校院名稱 成功大學
系所名稱(中) 醫學檢驗生物技術學系
系所名稱(英) Department of Medical Laboratory Science and Biotechnology
學年度 106
學期 2
出版年 107
研究生(中文) 賴韋珽
研究生(英文) Wei-Ting Lai
學號 T36054084
學位類別 碩士
語文別 英文
論文頁數 44頁
口試委員 指導教授-蔡佩珍
中文關鍵字 A群鏈球菌  肌肉  粒線體自噬  先天免疫反應 
英文關鍵字 Group A Streptococcus  muscle  mitophagy  innate immune response 
中文摘要 A群鏈球菌是重要的人類致病菌,可導致人類大範圍的感染,其中所造成最為嚴重的疾病為壞死性筋膜炎,能迅速的造成肌肉損壞並具有高致死性。肌肉細胞富含粒線體以提共大量能量以維持肌肉正常功能。粒線體為高度動態的雙層膜胞器,參與持續細胞能量,​​代謝和細胞凋亡。自噬作用是細胞內高度保守的細胞代謝途徑,能將受損細胞器或蛋白質進行降解。最近的研究表明粒線體參與在真核細胞中的先天免疫系統之中,幫助對抗病原體。先前的研究已報導A群鏈球菌的感染能誘導宿主內自噬作用發生,也被定義為異源吞噬,然而A群鏈球菌的胞內清除機制是細胞類型依賴性的。在我們的初步結果中,A群鏈球菌感染可以誘導肌肉細胞自噬。本研究,我們再次證明在壞死性筋膜炎患者的肌肉組織中的肌肉破壞伴隨著LC3斑點的增加,表明GAS感染引起與自噬相關的人體肌肉破壞。有趣的是,使用自噬抑製劑,3-MA和巴弗洛黴素A1,胞內細菌數量則減少,說明肌肉細胞自噬可能對肌細胞內細菌存活力提供保護作用。此外,我們還發現A群鏈球菌感染後會造成肌肉細胞粒線體的受損和損失。進一步檢查粒線體損失是否由粒線體自噬介導,發現自噬標記LC3-II積累在肌肉細胞的粒線體上。此外,我們通過MT-mKeima red檢測了GAS誘導的線粒體自噬,並觀察到586 nm處的紅色螢光信號增加,表明GAS感染通過完整的線粒體流程誘導線粒體自噬。然而在A群鏈球菌感染後,粒線體自噬分子PINK1和Parkin並未轉移到粒線體上,並發現是由BNIP3 / NIX介導的粒線體自噬參與A群鏈球菌感染。利用粒線體自噬抑製劑MitoTEMPO不能降低胞內細菌的存活,然而MitoQ能降低胞內細菌的存活率。BNIP3 / NIX的敲低也抑制了A群鏈球菌感染後的胞內細菌存活。我們的研究證明A群鏈球菌感染中粒線體數量的控制,能對於細菌發病機制中粒線體的功能提供新的見解。
英文摘要 Group A Streptococcus (GAS) is an important human pathogen and cause a broad range of human diseases, including necrotizing fasciitis (NF), a severe disease of sudden onset that rapidly muscle destruction with high lethality. Muscles are responsible for energetic functions requiring a large amount of energy which is mostly provided by mitochondria. Mitochondria are dynamic double-membrane-bound organelles that involved in cellular energy, metabolism and apoptosis. Moreover, recent studies had demonstrated that mitochondria participate in innate immune system against intracellular pathogen. Autophagy is a highly conserved cellular metabolic pathway by degradation of intracellular damaged organelles or proteins, and is also an anti-bacterial defense system in eukaryotic cells. GAS has been reported to induce autophagy, also defined as xenophagy, however, the following consequence of bacterial clearance appears to be cell-type-dependent. Our previous results demonstrated GAS induced muscular autophagy. Here, we first confirmed this GAS-induced muscular destruction associated with increased of LC3 puncta in human muscle tissue from patient with necrotizing fasciitis. Interestingly, intracellular bacterial numbers were decreased by treatment with autophagy inhibitors, indicating that this autophagy might provide a protective effect for intracellular survival in muscle cells. In addition, we also found muscular mitochondria was damaged and loss after GAS infection. To further linkage of these observations, we examined whether the mitochondrial loss is mediated by mitophagy, we isolated the muscular mitochondria and found autophagic marker, LC3-II, was accumulated. Further, we examined the GAS-induced mitophagy by MT-mKeima red and observed an increased red fluorescent signals, indicating GAS infection induced mitophagy through the completed mitophagic flux. However, two mitophagy makers, PINK1 and Parkin, were not translocated onto mitochondria after GAS infection, but BNIP3 and NIX were. Using mitophagy inhibitor, MitoTEMPO, intracellular bacterial survival was not decreased whereas intracellular bacterial survival was decreased after the blockage of mitophagy using MitoQ. Moreover, knockdown of BNIP3/NIX suppressed intracellular bacterial survival after GAS infection. Taken together, we demonstrated that the mitochondrial quantity control in GAS infection might offer insights into mitochondria function in bacterial pathogenesis.
論文目次 中文摘要 I
誌謝 III
1.1 Described of Group A Streptococcus infection 1
1.2 Mitochondrial homeostasis 2
1.3 Autophagy 3
1.4 Mitophagy 4
1.5 The role of mitochondria in innate immunity against bacterial infection 6
1.6 Previous results 8
2.1 Cell culture 9
2.2 Freezing cells 9
2.3 Bacteria strain 9
2.4 Bacteria culture 9
2.5 Total cell lysates preparation 10
2.6 Mitochondrial extraction 10
2.7 Cytosolic fraction concentration 11
2.8 Protein concentration assay 11
2.9 Western blotting 11
2.10 Quantitative RT-PCR 12
2.11 mtDNA content analysis 12
2.12 siRNA knockdown 13
2.13 Intracellular bacterial number 13
2.14 Mt-mKeima 13
2.15 Immunofluorescence stain 14
2.16 Statistical analysis 14
3.1 GAS induced human muscular damage and autophagy 15
3.2 GAS infection induced loss of mitochondria and muscular mitophagy 15
3.3 PINK1, Parkin and FUNDC1 were not involved in GAS-induced mitophagy but BNIP3 and NIX were 17
3.4 MitoTEMPO did not suppress intracellular GAS number 18
3.5 Intracellular bacterial survival was suppressed by MitoQ 19
3.6 Knockdown BNIP3/NIX suppressed intracellular bacterial number in GAS infection 20
Appendix 1. The primer used in this study 38
Appendix 2. The plasmids used in this study 38
Appendix 3. The antibodies used in this study 39
Appendix 4. The recipes if drug used in this study 40
參考文獻 1. Langlois, D.M. and M. Andreae, Group A streptococcal infections. Pediatr Rev, 2011. 32(10): p. 423-9; quiz 430.
2. Carapetis, J.R., et al., The global burden of group A streptococcal diseases. The Lancet Infectious Diseases, 2005. 5(11): p. 685-694.
3. Stevens, D.L. and A.E. Bryant, Necrotizing Soft-Tissue Infections. N Engl J Med, 2017. 377(23): p. 2253-2265.
4. Hurst, J.R., et al., Streptococcal pharyngitis and rheumatic heart disease: the superantigen hypothesis revisited. Infection, Genetics and Evolution, 2018. 61: p. 160-175.
5. Wessels, M.R., Streptolysin S. The Journal of infectious diseases, 2005. 192(1): p. 13-15.
6. Fontaine, M.C., J.J. Lee, and M.A. Kehoe, Combined Contributions of Streptolysin O and Streptolysin S to Virulence of Serotype M5 Streptococcus pyogenes Strain Manfredo. Infection and Immunity, 2003. 71(7): p. 3857-3865.
7. Mitchell, T.J., The pathogenesis of streptococcal infections: from tooth decay to meningitis. Nat Rev Microbiol, 2003. 1(3): p. 219-30.
8. Datta, V., et al., Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection. Mol Microbiol, 2005. 56(3): p. 681-95.
9. Kapur, V., et al., Cleavage of interleukin 1 beta (IL-1 beta) precursor to produce active IL-1 beta by a conserved extracellular cysteine protease from Streptococcus pyogenes. Proceedings of the National Academy of Sciences, 1993. 90(16): p. 7676-7680.
10. Herwald, H., et al., Streptococcal cysteine proteinase releases kinins: a virulence mechanism. Journal of Experimental Medicine, 1996. 184(2): p. 665-673.
11. Collin, M. and A. Olsen, Effect of SpeB and EndoS from Streptococcus pyogenes on Human Immunoglobulins. Infection and Immunity, 2001. 69(11): p. 7187-7189.
12. Tsai, P.-J., et al., Effect of group A streptococcal cysteine protease on invasion of epithelial cells. Infection and immunity, 1998. 66(4): p. 1460-1466.
13. Levine, E.G. and S.M. Manders, Life-threatening necrotizing fasciitis. Clinics in Dermatology, 2005. 23(2): p. 144-147.
14. McHenry, C.R., et al., Determinants of mortality for necrotizing soft-tissue infections. Annals of surgery, 1995. 221(5): p. 558.
15. Taviloglu, K. and H. Yanar, Necrotizing fasciitis: strategies for diagnosis and management. World J Emerg Surg, 2007. 2: p. 19.
16. Martin, J.M. and M. Green, Group A Streptococcus. Seminars in Pediatric Infectious Diseases, 2006. 17(3): p. 140-148.
17. Stotland, A. and R.A. Gottlieb, Mitochondrial quality control: Easy come, easy go. Biochim Biophys Acta, 2015. 1853(10 Pt B): p. 2802-11.
18. Westermann, B., Mitochondrial fusion and fission in cell life and death. Nature Reviews Molecular Cell Biology, 2010. 11(12): p. 872-884.
19. Palikaras, K. and N. Tavernarakis, Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp Gerontol, 2014. 56: p. 182-8.
20. Zhu, J., K.Z. Wang, and C.T. Chu, After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. Autophagy, 2013. 9(11): p. 1663-76.
21. Kelly, D.P. and R.C. Scarpulla, Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes & development, 2004. 18(4): p. 357-368.
22. Mizushima, N., et al., Autophagy fights disease through cellular self-digestion. Nature, 2008. 451(7182): p. 1069-75.
23. Chauhan, S., M.A. Mandell, and V. Deretic, IRGM governs the core autophagy machinery to conduct antimicrobial defense. Mol Cell, 2015. 58(3): p. 507-21.
24. Deretic, V., et al., Immunologic manifestations of autophagy. J Clin Invest, 2015. 125(1): p. 75-84.
25. Levine, B., N. Mizushima, and H.W. Virgin, Autophagy in immunity and inflammation. Nature, 2011. 469(7330): p. 323-35.
26. Yuk, J.M., T. Yoshimori, and E.K. Jo, Autophagy and bacterial infectious diseases. Exp Mol Med, 2012. 44(2): p. 99-108.
27. Glick, D., S. Barth, and K.F. Macleod, Autophagy: cellular and molecular mechanisms. The Journal of pathology, 2010. 221(1): p. 3-12.
28. Song, M., et al., Super-suppression of mitochondrial reactive oxygen species signaling impairs compensatory autophagy in primary mitophagic cardiomyopathy. Circ Res, 2014. 115(3): p. 348-53.
29. Kim, N.C., et al., VCP is essential for mitochondrial quality control by PINK1/Parkin and this function is impaired by VCP mutations. Neuron, 2013. 78(1): p. 65-80.
30. Winklhofer, K.F., Parkin and mitochondrial quality control: toward assembling the puzzle. Trends Cell Biol, 2014. 24(6): p. 332-41.
31. Kim, I., S. Rodriguez-Enriquez, and J.J. Lemasters, Selective degradation of mitochondria by mitophagy. Archives of biochemistry and biophysics, 2007. 462(2): p. 245-253.
32. Krysko, D.V., et al., Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends in Immunology, 2011. 32(4): p. 157-164.
33. Kim, I., S. Rodriguez-Enriquez, and J.J. Lemasters, Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys, 2007. 462(2): p. 245-53.
34. Leites, E.P. and V.A. Morais, Mitochondrial quality control pathways: PINK1 acts as a gatekeeper. Biochem Biophys Res Commun, 2018. 500(1): p. 45-50.
35. Hamacher-Brady, A. and N.R. Brady, Mitophagy programs mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol Life Sci, 2016. 73(4): p. 775-95.
36. May, A.I., R.J. Devenish, and M. Prescott, The many faces of mitochondrial autophagy: making sense of contrasting observations in recent research. Int J Cell Biol, 2012. 2012: p. 431684.
37. Kubli, D.A. and Å.B. Gustafsson, Mitochondria and mitophagy: the yin and yang of cell death control. Circulation research, 2012. 111(9): p. 1208-1221.
38. Narendra, D., et al., Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol, 2008. 183(5): p. 795-803.
39. Bellot, G., et al., Hypoxia-Induced Autophagy Is Mediated through Hypoxia-Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains. Molecular and Cellular Biology, 2009. 29(10): p. 2570-2581.
40. Novak, I., et al., Nix is a selective autophagy receptor for mitochondrial clearance. EMBO reports, 2009. 11(1): p. 45-51.
41. Weinberg, S.E., L.A. Sena, and N.S. Chandel, Mitochondria in the regulation of innate and adaptive immunity. Immunity, 2015. 42(3): p. 406-17.
42. Sander, L.E. and J. Garaude, The mitochondrial respiratory chain: A metabolic rheostat of innate immune cell-mediated antibacterial responses. Mitochondrion, 2018. 41: p. 28-36.
43. Lobet, E., J.J. Letesson, and T. Arnould, Mitochondria: a target for bacteria. Biochem Pharmacol, 2015. 94(3): p. 173-85.
44. Pinegin, B., et al., The role of mitochondrial ROS in antibacterial immunity. Journal of Cellular Physiology, 2018. 233(5): p. 3745-3754.
45. Arnoult, D., et al., Mitochondria in innate immunity. EMBO reports, 2011. 12(9): p. 901-910.
46. Kim, S.-J., et al., Hepatitis B virus disrupts mitochondrial dynamics: induces fission and mitophagy to attenuate apoptosis. PLoS pathogens, 2013. 9(12): p. e1003722.
47. Ou, J.-h.J., et al., Hepatitis C Virus Induces the Mitochondrial Translocation of Parkin and Subsequent Mitophagy. PLoS Pathogens, 2013. 9(3).
48. Ding, B., et al., The Matrix Protein of Human Parainfluenza Virus Type 3 Induces Mitophagy that Suppresses Interferon Responses. Cell Host Microbe, 2017. 21(4): p. 538-547 e4.
49. Stavru, F., et al., Atypical mitochondrial fission upon bacterial infection. Proceedings of the National Academy of Sciences, 2013. 110(40): p. 16003-16008.
50. Pellegrino, M.W. and C.M. Haynes, Mitophagy and the mitochondrial unfolded protein response in neurodegeneration and bacterial infection. BMC Biol, 2015. 13: p. 22.
51. Nakagawa, I., et al., Autophagy defends cells against invading group A Streptococcus. Science, 2004. 306(5698): p. 1037-40.
52. Lu, S.L., et al., Insufficient Acidification of Autophagosomes Facilitates Group A Streptococcus Survival and Growth in Endothelial Cells. MBio, 2015. 6(5): p. e01435-15.
53. Katayama, H., et al., A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chemistry & biology, 2011. 18(8): p. 1042-1052.
54. Vives-Bauza, C., et al., PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proceedings of the National Academy of Sciences, 2010. 107(1): p. 378-383.
55. Georgakopoulos, N.D., et al., Reversible Keap1 inhibitors are preferential pharmacological tools to modulate cellular mitophagy. Sci Rep, 2017. 7(1): p. 10303.
56. Ito, S., et al., PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Autophagy, 2015. 11(3): p. 547-59.
57. Larson-Casey, J.L., et al., Macrophage Akt1 Kinase-Mediated Mitophagy Modulates Apoptosis Resistance and Pulmonary Fibrosis. Immunity, 2016. 44(3): p. 582-596.
58. Trnka, J., et al., Antioxidant properties of MitoTEMPOL and its hydroxylamine. Free Radic Res, 2009. 43(1): p. 4-12.
59. Du, K., A. Farhood, and H. Jaeschke, Mitochondria-targeted antioxidant Mito-Tempo protects against acetaminophen hepatotoxicity. Archives of toxicology, 2017. 91(2): p. 761-773.
60. James, A.M., et al., Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. J Biol Chem, 2007. 282(20): p. 14708-18.
61. Lowes, D.A., et al., Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. Br J Anaesth, 2013. 110(3): p. 472-80.
62. Mizumura, K., et al., Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. Journal of Clinical Investigation, 2014. 124(9): p. 3987-4003.
63. Ney, P.A., Mitochondrial autophagy: origins, significance, and role of BNIP3 and NIX. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2015. 1853(10): p. 2775-2783.
64. Francione, L., et al., Legionella pneumophila multiplication is enhanced by chronic AMPK signalling in mitochondrially diseased Dictyostelium cells. Disease models & mechanisms, 2009: p. dmm. 003319.
65. Montesano, A., et al., Resveratrol promotes myogenesis and hypertrophy in murine myoblasts. Journal of translational medicine, 2013. 11(1): p. 310.
66. Lagouge, M., et al., Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell, 2006. 127(6): p. 1109-1122.
67. Menzies, K.J., et al., Sirtuin 1-mediated effects of exercise and resveratrol on mitochondrial biogenesis. Journal of Biological Chemistry, 2013: p. jbc. M112. 431155.
68. Euba, B., et al., Resveratrol therapeutics combines both antimicrobial and immunomodulatory properties against respiratory infection by nontypeable Haemophilus influenzae. Scientific reports, 2017. 7(1): p. 12860.
69. Jiang, J.H., J. Tong, and K. Gabriel, Hijacking mitochondria: bacterial toxins that modulate mitochondrial function. IUBMB life, 2012. 64(5): p. 397-401.
70. Um, J.-H. and J. Yun, Emerging role of mitophagy in human diseases and physiology. BMB reports, 2017. 50(6): p. 299.
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-09-01起公開。

  • 如您有疑問,請聯絡圖書館