進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2808201814594200
論文名稱(中文) 寬頻化共振型吸音界面設計與分析
論文名稱(英文) The design and analysis of acoustic broadband absorptive surface using resonance
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 黃任廷
研究生(英文) Jen-Ting Huang
學號 N16054386
學位類別 碩士
語文別 中文
論文頁數 68頁
口試委員 指導教授-張怡玲
口試委員-李永春
口試委員-孫嘉宏
中文關鍵字 噪音控制  阻抗匹配  寬頻吸音率  聲學阻抗腔 
英文關鍵字 Acoustic Impedance  Absorption  Impedance Matching Theory  Impedance Chamber 
學科別分類
中文摘要 本研究目標為設計結構薄化、吸音率寬頻化以及具有低頻噪音控制能力的吸音界面。以直圓管的理論解作為基礎,以阻抗匹配法進行吸音率的計算,並討論並聯與串聯的兩種不同管的組合型態進行寬頻化的設計。之後利用數值模擬進行不同幾何截面吸音管的吸音率計算,並進行更複雜幾何結構的吸音率計算。最後,架設聲學阻抗腔量測系統,以吸音率實驗進行與理論及模擬的驗證,並以3D列印機製作實驗試件。實驗與模擬比較之下,頻率位置皆吻合。所設計的串並聯式的寬頻化共振型吸音界面,於減少使用管數的同時,同時也減少了結構的總厚度,對於吸音結構薄化,以及從低到高頻率具有良好的寬頻化的吸音效果。
英文摘要 In this study, an improved acoustic broadband absorptive surface was proposed and investigated. The impedance chamber system was built to measure the absorption of the designed structure. We used the impedance matching theory to calculate the surface acoustic impedance and sound absorption for different types of tube absorbers, and numerical simulation was performed to examine the applicability of the impedance matching theory. It was found that the absorption of the absorbing tube would not change a lot by changing the cross-section shape from circular to square. The absorption peaks were caused by the resonance inside the tube and the acoustic energy was dissipated by the air viscosity. By introducing the folding tube, it was also discovered that the higher absorption peak frequency would shift if we increased the folding number. These findings were confirmed both numerically and experimentally. Lastly, we proposed an acoustic broadband absorptive surface design by combining parallel and serial tubes with foldings to save space while maintaining high absorption over a wide range of frequencies.
論文目次 摘要 I
Extended Abstract II
誌謝 XI
目錄 XII
表目錄 XV
圖目錄 XVI
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 本文架構 3
第二章 基本理論、實驗量測原理與架設 4
2.1 聲波波動方程式 4
2.1.1 連續方程式(Continuity equation) 4
2.1.2 動量方程式(Momentum equation) 4
2.1.3 狀態方程式(State equation) 5
2.1.4 聲波波動方程式 5
2.2 直圓管聲阻抗理論 5
2.2.1 黏滯效應 6
2.2.2 熱效應 7
2.3 等效界面聲阻抗與吸音率基本理論 8
2.3.1 正向入射外附吸音材料之剛性界面聲阻抗 8
2.3.2 並聯管聲阻抗 11
2.3.3 串聯管聲阻抗 11
2.3.4 阻抗匹配法計算反射係數與吸音係數 11
2.4 退火模擬法(Anneal Simulation Optimization) 12
2.4.1 退火模擬法直圓管吸音率最佳化 13
2.4.2 利用退火模擬法進行寬頻吸音率最佳化 14
2.5 聲學阻抗腔系統量測原理及量測流程 15
2.5.1 量測原理 16
2.5.2 量測系統介紹與量測流程 18
第三章 共振型吸音管之模擬分析 25
3.1 聲學阻抗腔之空腔模擬分析 25
3.1.1 材料參數設定 25
3.1.2 阻抗腔幾何與邊界設定 26
3.1.3 全波模擬 26
3.2 吸音直圓管與方管之模擬與分析 27
3.2.1 吸音直圓管與方管模擬設定 27
3.2.2 直圓管理論解與模擬比較 28
3.2.3 直圓管、直方管模擬與分析 28
3.2.4 彎折方管模擬吸音率分析 28
3.2.5 並聯管之吸音率模擬分析 29
3.3 串聯吸音管之吸音率模擬與分析 29
3.4 彎折串聯管之吸音率模擬 30
第四章 共振型吸音管之實驗量測 47
4.1 基本空腔實驗量測結果 47
4.2 量測吸音試件製作 48
4.2.1 一般吸音直管尺寸設計考量 48
4.2.2 寬頻化吸音界面設計考量 48
4.3 吸音直管實驗量測結果 49
4.4 彎折方管實驗量測結果 49
4.5 並聯式寬頻化吸音界面實驗量測結果 50
4.6 彎折串聯管實驗量測結果 50
4.7 串並聯合用式寬頻化吸音界面實驗量測結果 51
第五章 結論與建議 67
5.1 結論 67
5.2 建議 67
參考文獻 68
參考文獻 [1] M. R. Stinson, "The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape," The Journal of the Acoustical Society of America, vol. 89, pp. 550-558, 1991.
[2] D.-Y. Maa, "Potential of microperforated panel absorber," The Journal of the Acoustical Society of America, vol. 104, pp. 2861-2866, 1998.
[3] D. Li, D. Chang, and B. Liu, "Enhancing the low frequency sound absorption of a perforated panel by parallel-arranged extended tubes," Applied Acoustics, vol. 102, pp. 126-132, 2016.
[4] X. Cai, Q. Guo, G. Hu, and J. Yang, "Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators," Applied Physics Letters, vol. 105, p. 121901, 2014.
[5] Y. Li and B. M. Assouar, "Acoustic metasurface-based perfect absorber with deep subwavelength thickness," Applied Physics Letters, vol. 108, p. 063502, 2016.
[6] C. Chen, Z. Du, G. Hu, and J. Yang, "A low-frequency sound absorbing material with subwavelength thickness," Applied Physics Letters, vol. 110, p. 221903, 2017.
[7] 廖翊涵, "四分之一波長共振腔之寬頻吸音薄板研究," 臺灣大學應用力學研究所學位論文, pp. 1-84, 2017.
[8] M. Yang, S. Chen, C. Fu, and P. Sheng, "Optimal sound-absorbing structures," Materials Horizons, vol. 4, pp. 673-680, 2017.
[9] 白明憲, 工程聲學: 全華, 2008.
[10] J. Allard and N. Atalla, Propagation of sound in porous media: modelling sound absorbing materials : John Wiley & Sons, 2009.
[11] F. J. M. van der Eerden, Noise reduction with coupled prismatic tubes: Universiteit Twente, Enschede, The Netherlands, 2000.
[12] A. Climente, D. Torrent, and J. Sánchez-Dehesa, "Omnidirectional broadband acoustic absorber based on metamaterials," Applied Physics Letters, vol. 100, p. 144103, 2012.
[13] A. C. Alarcón, "Refractive devices for acoustical and flexural waves," Editorial Universitat Politècnica de València, 2015.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw