進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2808201812031000
論文名稱(中文) 探討細胞冒泡死亡相關的癌症幹細胞球體爆炸
論文名稱(英文) Investigating cancer stem cell sphere explosion via bubbling cell death
校院名稱 成功大學
系所名稱(中) 分子醫學研究所
系所名稱(英) Institute of Molecular Medicine
學年度 106
學期 2
出版年 107
研究生(中文) 何佩娟
研究生(英文) Pei-Chuan Ho
學號 T16051082
學位類別 碩士
語文別 英文
論文頁數 65頁
口試委員 指導教授-張南山
口試委員-王憶卿
口試委員-呂增宏
口試委員-蔣輯武
口試委員-徐麗君
中文關鍵字 細胞冒泡死亡  含雙色氨酸功能區氧化還原酶(WWOX)  癌症幹細胞  WWOX/ERK/IκBα複合體 
英文關鍵字 bubbling cell death  WWOX  cancer stem cell  WWOX/ERK/IκBα signaling 
學科別分類
中文摘要 細胞冒泡死亡(BCD)被定義為“細胞從細胞核位置形成一顆泡泡,並且泡泡會膨脹到細胞外,進而導致細胞死亡”。含雙色氨酸功能區氧化還原酶(WWOX)在紫外光/冷衝擊造成的核損傷以及冒泡死亡之中是相當重要的。Ser14磷酸化的腫瘤抑制子WWOX被發現會累積在腫瘤組織中,但其功能仍有許多未知性。我們曾經利用室溫的顯微鏡拍攝觀察,發現乳癌幹細胞球體受到紫外光/冷衝擊刺激後會先皺縮再接著爆炸。本篇研究中,我們發現肺癌化療藥物Ceritinib對乳癌細胞具有細胞毒性。進一步使用肺癌化療藥物Ceritinib處理乳癌幹細胞球體,發現其藥物也能夠引發球體爆炸並且細胞行冒泡死亡。我們發現Ceritinib會影響細胞中pERK、IκBα、pS14-WWOX以及pY33-WWOX的蛋白表現量,pERK、IκBα和pS14-WWOX表現下調而pY33-WWOX的表現上升。並且,紫外光/冷衝擊刺激和ceritinib對細胞蛋白表現量的影響有相同的趨勢。從處理WWOX7-21抗體的實驗中,我們發現WWOX7-21抗體會顯著抑制ceritinib介導的球體爆炸,相反地,WWOX7-21胜肽則能夠增強球體爆炸。值得注意的是,pS14-WWOX胜肽處理後,細胞能夠獲得對ceritinib的抗性。免疫螢光顯微鏡揭露了Ceritinib 會誘導ERK和WWOX蛋白轉移進細胞核的表現,並且pS14-WWOX前處理能增強ceritinib介導的內源性ERK蛋白核轉移。我們透過螢光共振能量轉移(FRET)顯微鏡觀察到ceritinib減低WWOX/ERK/IκBα複合體的形成。總而言之,這些結果顯示WWOX參與在癌症幹細胞爆炸之中,而Ser14磷酸化會使腫瘤抑制子WWOX轉換去促進癌症進程。WWOX/ERK/IκBα複合體也在ceritinib介導的癌症幹細胞球體爆炸中扮演重要的角色。
英文摘要 Bubbling cell death (BCD) is defined as "formation of a bubble from the nucleus per cell and release of this swelling bubble from the cell surface to extracellular space that causes cell death". WW domain-containing oxidoreductase, known as WWOX, is essential for UV/cold shock-induced nuclear damage and bubbling death. Tumor suppressor WWOX with Ser14 phosphorylation is shown to accumulate in the tumor lesions, but functional significance of this regard is largely unknown. We have previously demonstrated that breast cancer 4T1 stem cells undergo shrinkage and then explosion with dead cells in response to UV/cold shock at room temperature, as determined by time-lapse microscopy. Here, we investigated how breast cancer stem cell sphere explosion occurs via the mechanisms of BCD. Ceritinib, an anaplastic lymphoma kinase (ALK) inhibitor for lung cancer, caused toxicity in breast cancer 4T1 cells. When breast cancer 4T1 stem cell spheres were treated with ceritinib, the spheres fully exploded with dead cells via BCD. Ceritinib downregulated the expression of phosphorylated ERK, IκBα and pS14-WWOX, and upregulated pY33-WWOX. UV/cold shock treatment also showed the same result. Treatment of the WWOX7-21 antibody resulted in significantly inhibition of ceritinib-mediated 4T1 sphere explosion. In contrast, synthetic WWOX7-21 peptides enhanced 4T1 sphere death by ceritinib. Notably, when Ser14-phosphorylated WWOX peptide was used to treat the 4T1 spheres, cells significantly acquired resistance to ceritinib. Ceritinib induced ERK and WWOX protein translocation into nucleus. Immunofluorescent microscopy revealed that pS14-WWOX antibody pretreatment enhanced ceritinib-mediated nuclear translocation of endogenous ERK. By Förster resonance energy transfer (FRET) microscopy, we observed that ceritinib reduced the WWOX/ERK/IκBα complex formation. In summary, phosphorylation at Ser14 turns WWOX from tumor suppressor into tumor promoter and regulates the cancer stem cell sphere explosion. WWOX/ERK/IκBα complex also plays a role in ceritinib-dependent cancer stem cell explosion.
論文目次 中文摘要 I
Abstract II
致謝 III
Contents IV
Abbreviation VIII
Introduction 1
The goal of this study 1
Cancer stem cells (CSCs) 1
Programmed cell death 2
Bubbling cell death 4
WW domain-containing oxidoreductase (WWOX) 5
Role of WWOX in cancer 7
WWOX in breast cancer 8
HYAL2-WWOX-SMAD4 signaling in cell death 9
WWOX in neurodegeneration 10
Materials and Methods 12
Cell lines and cDNA expression constructs 12
UV irradiation and time-lapse microscopy 12
Preparation of WWOX peptides and antibodies 12
Chemicals and Antibodies 13
MTT assay 13
Cell cycle analysis 13
DNA fragmentation 14
Western Blot and co-immunoprecipitation 14
Nuclear extraction 15
Immunofluorescence staining 15
Time-lapse tri-molecular FRET microscopy 16
Statistical analysis 16
Results 17
ALK inhibitor Ceritinib induced cell death in breast cancer 4T1 cells. 17
Breast cancer stem cell sphere explosion is determined by time-lapse microscopy at room temperature. 17
p53 regulated ceritinib-mediated sphere explosion. Inhibition of phosphatases led to enhanced explosion by ceritinib. 18
Ceritinib affects IκBα/WWOX/ERK expression in 4T1-luc cells. 18
WWOX 7-21 antibody inhibited ceritinib-mediated 4T1 sphere explosion and death. 19
pS14-WWOX7-21 peptide strongly protected breast 4T1 stem cell spheres from explosion and death caused by ceritinib. 20
Suppression of pS14-WWOX on the surface of 4T1 spheres by antibodies increased their susceptibility to attack by activated Z cells. 20
pS14-WWOX antibody pretreatment enhance ceritinib-mediated nuclear translocation of endogenous ERK. 21
Ceritinib-mediated WWOX/ERK/IκBα signal pathway 22
Conclusion 23
Discussion 24
Reference 27
Figures 36
Figure 1. A schematic diagram of WWOX structure. 36
Figure 2. Signaling pathway network of WWOX. 37
Figure 3. The effect of ceritinib on cell death. 38
Figure 4. Breast cancer stem cell sphere explosion is determined by time-lapse microscopy at room temperature. 40
Figure 5. Ceritinib regulates the expression of pro-survival protein and WWOX. 43
Figure 6. The effect of ceritinib is compared with UV/cold-shock treatment in 4T1-luc cells at different temperature. 45
Figure 7. WWOX antibody regulates ceritinib-caused cell death. 47
Figure 8. WWOX 7-21 antibody inhibits ceritinib-mediated 4T1 sphere explosion and death. 48
Figure 9. pS14-WWOX7-21 peptide strongly protects breast 4T1 stem cell spheres from explosion and death caused by ceritinib. 50
Figure 10. Suppression of pS14 -WWOX on the surface of 4T1 spheres by antibodies increases their susceptibility to attack by activated Z cells. 51
Figure 11. UV/cold shock and ceritinib both enhance nuclear translocation of endogenous WWOX. 53
Figure 12. Ceritinib-mediated nuclear translocation of endogenous ERK/WWOX. 55
Figure 13. pS14-WWOX Ab pretreatment enhances ceritinib-mediated nuclear translocation of endogenous ERK. 58
Figure 14. WWOX peptide pretreatment regulates ceritinib-mediated signal pathway WWOX/ERK/IκBα. 60
Figure 15. Ceritinib affects the binding of WWOX with MEK. 61
Figure 16. Time-lapse FRET microscopy for ceritinib-mediated signal pathway WWOX/ERK/IκBα. 62
Figure 17. The potential molecular action of ceritinib-mediated cancer stem cell sphere explosion. 64
參考文獻 1. Chang, N. S., Doherty, J., Ensign, A., Schultz, L., Hsu, L. J. and Hong, Q. (2005) WOX1 is essential for tumor necrosis factor-, UV light-, staurosporine-, and p53-mediated cell death, and its tyrosine 33-phosphorylated form binds and stabi-lizes serine 46-phosphorylated p53. J Biol. Chem. 280:43100–43108.
2. Reya, T., Morrison, S. J., Clarke, M. F., Weissman, I. L. (2001) Stem cells, cancer, and cancer stem cells. Nature. 414, 105–111
3. Askanazy, M. Die Teratome nach ihrem Bau, ihrem Verlauf, ihrer Genese und im Vergleich zum experimentellen Teratoid. Verhandl. Deutsch. Pathol. 11, 39–82 (1907).
4. Nguyen, L.V., Vanner, R., Dirks, P., Eaves, C. J. (2012) Cancer stem cells: an evolving concept. Nat. Rev. Cancer.12:133–143
5. Finlay-Schultz, J. and Sartorius, C. A. (2015) Steroid Hormones, Steroid Receptors, and Breast Cancer Stem Cells. J Mammary Gland Biol Neoplasia. 20(1-2):39-50.
6. Hacker, G. (2000) The morphology of apoptosis. Cell Tissue Res 301, 5-17
7. Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26, 239-257
8. Elmore, S. (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35, 495-516
9. Kurosaka, K., Takahashi, M., Watanabe, N., and Kobayashi, Y. (2003) Silent cleanup of very early apoptotic cells by macrophages. J Immunol 171, 4672-4679
10. Savill, J., and Fadok, V. (2000) Corpse clearance defines the meaning of cell death. Nature 407, 784-788
11. Bratton, D. L., Fadok, V. A., Richter, D. A., Kailey, J. M., Guthrie, L. A., and Henson, P. M. (1997) Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J Biol Chem 272, 26159-26165
12. Ashkenazi, A., and Dixit, V. M. (1998) Death receptors: signaling and modulation. Science 281, 1305-1308
13. Kischkel, F. C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P. H., and Peter, M. E. (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14, 5579-5588
14. Saelens, X., Festjens, N., Vande Walle, L., van Gurp, M., van Loo, G., and Vandenabeele, P. (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23, 2861-2874
15. Chinnaiyan, A. M. (1999) The apoptosome: heart and soul of the cell death machine. Neoplasia 1, 5-15
16. Hill, M. M., Adrain, C., Duriez, P. J., Creagh, E. M., and Martin, S. J. (2004) Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. EMBO J 23, 2134-2145
17. Joza, N., Susin, S. A., Daugas, E., Stanford, W. L., Cho, S. K., Li, C. Y., Sasaki, T., Elia, A. J., Cheng, H. Y., Ravagnan, L., Ferri, K. F., Zamzami, N., Wakeham, A., Hakem, R., Yoshida, H., Kong, Y. Y., Mak, T. W., Zuniga-Pflucker, J. C., Kroemer, G., and Penninger, J. M. (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549-554
18. Li, L. Y., Luo, X., and Wang, X. (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95-99
19. Bursch, W., Ellinger, A., Gerner, C., Frohwein, U., and Schulte-Hermann, R. (2000) Programmed cell death (PCD). Apoptosis, autophagic PCD, or others? Ann N Y Acad Sci 926, 1-12
20. Schwartz, L. M., Smith, S. W., Jones, M. E., and Osborne, B. A. (1993) Do all programmed cell deaths occur via apoptosis? Proc Natl Acad Sci U S A 90, 980-984
21. Patel, A. S., Lin, L., Geyer, A., Haspel, J. A., An, C. H., Cao, J., Rosas, I. O., and Morse, D. (2012) Autophagy in idiopathic pulmonary fibrosis. PLoS One 7, e41394
22. Proskuryakov, S. Y., Konoplyannikov, A. G., and Gabai, V. L. (2003) Necrosis: a specific form of programmed cell death? Exp Cell Res 283, 1-16
23. Majno, G., and Joris, I. (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146, 3-15
24. Chang, N. S. (2016) Bubbling cell death: A hot air balloon released from the nucleusin the cold. Exp. Biol. Med. 241: 1306–1315.
25. Chen, S. J, Lin, P. W., Lin, H. P., Huang, S. S., Lai, F. J., Sheu, H. M., Hsu, L. J. and Chang, N. S. (2015) UV irradiation/cold shock-mediated apoptosis is switched to bubbling cell death at low temperatures. Oncotarget 6:8007–8018
26. Chang, N. S., Pratt, N., Heath, J., Schultz, L., Sleve, D., Carey, G. B. and Zevotek, N. (2001) Hyaluronidase Induction of a WW Domain-containing Oxidoreductase That Enhances Tumor Necrosis Factor Cytotoxicity. J. Biol. Chem. 276, 3361-3370
27. Chang, N. S., Hsu, L. J., Lin, Y. S., Lai, F. J. and Sheu, H. M. (2007) WW domain-containing oxidoreductase: a candidate tumor suppressor. Trends Mol Med 13, 12-22
28. Sudol, M., Recinos, C. C., Abraczinskas, J., Humbert, J., and Farooq, A. (2005) WW or WoW: the WW domains in a union of bliss. IUBMB Life 57, 773-778
29. Abu-Odeh, M., Bar-Mag, T., Huang, H., Kim, T., Salah, Z., Abdeen, S. K., Sudol, M., Reichmann, D., Sidhu, S., Kim, P. M., and Aqeilan, R. I. (2014) Characterizing WW domain interactions of tumor suppressor WWOX reveals its association with multiprotein networks. J Biol Chem 289, 8865-8880
30. McDonald, C. B., Buffa, L., Bar-Mag, T., Salah, Z., Bhat, V., Mikles, D. C., Deegan, B. J., Seldeen, K. L., Malhotra, A., Sudol, M., Aqeilan, R. I., Nawaz, Z., and Farooq, A. (2012) Biophysical basis of the binding of WWOX tumor suppressor to WBP1 and WBP2 adaptors. J Mol Biol 422, 58-74
31. Aqeilan, R. I., Pekarsky, Y., Herrero, J. J., Palamarchuk, A., Letofsky, J., Druck, T., Trapasso, F., Han, S. Y., Melino, G., Huebner, K., and Croce, C. M. (2004) Functional association between Wwox tumor suppressor protein and p73, a p53 homolog. Proc Natl Acad Sci U S A 101, 4401-4406
32. Mahajan, N. P., Whang, Y. E., Mohler, J. L., and Earp, H. S. (2005) Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res 65, 10514-10523
33. Chang, N. S., Schultz, L., Hsu, L. J., Lewis, J., Su, M., and Sze, C. I. (2005) 17beta-Estradiol upregulates and activates WOX1/WWOXv1 and WOX2/WWOXv2 in vitro: potential role in cancerous progression of breast and prostate to a premetastatic state in vivo. Oncogene 24, 714-723
34. Hong, Q., Sze, C. I., Lin, S. R., Lee, M. H., He, R. Y., Schultz, L., Chang, J. Y., Chen, S. J., Boackle, R. J., Hsu, L. J., and Chang, N. S. (2009) Complement C1q activates tumor suppressor WWOX to induce apoptosis in prostate cancer cells. PLoS One 4, e5755
35. Hsu, L. J., Schultz, L., Hong, Q., Van Moer, K., Heath, J., Li, M. Y., Lai, F. J., Lin, S. R., Lee, M. H., Lo, C. P., Lin, Y. S., Chen, S. T., and Chang, N. S. (2009) Transforming growth factor beta1 signaling via interaction with cell surface Hyal-2 and recruitment of WWOX/WOX1. J Biol Chem 284, 16049-16059
36. Chang, N. S., Doherty, J., and Ensign, A. (2003) JNK1 physically interacts with WW domain-containing oxidoreductase (WOX1) and inhibits WOX1-mediated apoptosis. J Biol Chem 278, 9195-9202
37. Chang, J. Y., He, R. Y., Lin, H. P., Hsu, L. J., Lai, F. J., Hong, Q., Chen, S. J., and Chang, N. S. (2010) Signaling from membrane receptors to tumor suppressor WW domain-containing oxidoreductase. Exp Biol Med (Maywood) 235, 796-804
38. Chang, N. S. (2016) WWOX drives T leukemia cell maturation via IκBα/WWOX/ERK signal pathway. J Tumor Res 2:e101
39. Aqeilan, R. I., Donati, V., Gaudio, E., Nicoloso, M. S., Sundvall, M., Korhonen, A., Lundin, J., Isola, J., Sudol, M., Joensuu, H., Croce, C. M., and Elenius, K. (2007) Association of Wwox with ErbB4 in breast cancer. Cancer Res 67, 9330-9336
40. Aqeilan, R. I., Palamarchuk, A., Weigel, R. J., Herrero, J. J., Pekarsky, Y., and Croce, C. M. (2004) Physical and functional interactions between the Wwox tumor suppressor protein and the AP-2gamma transcription factor. Cancer Res 64, 8256-8261
41. Gaudio, E., Palamarchuk, A., Palumbo, T., Trapasso, F., Pekarsky, Y., Croce, C. M., and Aqeilan, R. I. (2006) Physical association with WWOX suppresses c-Jun transcriptional activity. Cancer Res 66, 11585-11589
42. Chang, N. S., Doherty, J., Ensign, A., Lewis, J., Heath, J., Schultz, L., Chen, S. T., and Oppermann, U. (2003) Molecular mechanisms underlying WOX1 activation during apoptotic and stress responses. Biochem Pharmacol 66, 1347-1354
43. Ghebrehiwet, B., and Peerschke, E. I. (2004) cC1q-R (calreticulin) and gC1q-R/p33: ubiquitously expressed multi-ligand binding cellular proteins involved in inflammation and infection. Mol Immunol 41, 173-183
44. Chang, Y., Lan, Y. Y., Hsiao, J. R., and Chang, N. S. (2015) Strategies of oncogenic microbes to deal with WW domain-containing oxidoreductase. Exp Biol Med (Maywood) 240, 329-337
45. Kang, C. D., Lee, B. K., Kim, K. W., Kim, C. M., Kim, S. H., and Chung, B. S. (1996) Signaling mechanism of PMA-induced differentiation of K562 cells. Biochem Biophys Res Commun 221, 95-100
46. Lin, H. P., Chang, J. Y., Lin, S. R., Lee, M. H., Huang, S. S., Hsu, L. J., and Chang, N. S. (2011) Identification of an In Vivo MEK/WOX1 Complex as a Master Switch for Apoptosis in T Cell Leukemia. Genes Cancer 2, 550-562
47. Driouch, K., Prydz, H., Monese, R., Johansen, H., Lidereau, R., and Frengen, E. (2002) Alternative transcripts of the candidate tumor suppressor gene, WWOX, are expressed at high levels in human breast tumors. Oncogene 21, 1832-1840
48. Smith, D. I., McAvoy, S., Zhu, Y., and Perez, D. S. (2007) Large common fragile site genes and cancer. Semin Cancer Biol 17, 31-41
49. Del Mare, S., Salah, Z., and Aqeilan, R. I. (2009) WWOX: its genomics, partners, and functions. J Cell Biochem 108, 737-745
50. Wang, M., Gu, J., Wang, Y., and Gong, B. (2009) Loss of WWOX expression in human extrahepatic cholangiocarcinoma. J Cancer Res Clin Oncol 135, 39-44
51. Wang, X., Chao, L., Jin, G., Ma, G., Zang, Y., and Sun, J. (2009) Association between CpG island methylation of the WWOX gene and its expression in breast cancers. Tumour Biol 30, 8-14
52. Nakayama, S., Semba, S., Maeda, N., Aqeilan, R. I., Huebner, K., and Yokozaki, H. (2008) Role of the WWOX gene, encompassing fragile region FRA16D, in suppression of pancreatic carcinoma cells. Cancer Sci 99, 1370-1376
53. Yan, J., Zhang, M., Zhang, J., Chen, X., and Zhang, X. (2011) Helicobacter pylori infection promotes methylation of WWOX gene in human gastric cancer. Biochem Biophys Res Commun 408, 99-102
54. Fabbri, M., Iliopoulos, D., Trapasso, F., Aqeilan, R. I., Cimmino, A., Zanesi, N., Yendamuri, S., Han, S. Y., Amadori, D., Huebner, K., and Croce, C. M. (2005) WWOX gene restoration prevents lung cancer growth in vitro and in vivo. Proc Natl Acad Sci U S A 102, 15611-15616
55. Qin, H. R., Iliopoulos, D., Semba, S., Fabbri, M., Druck, T., Volinia, S., Croce, C. M., Morrison, C. D., Klein, R. D., and Huebner, K. (2006) A role for the WWOX gene in prostate cancer. Cancer Res 66, 6477-6481
56. Lai, F. J., Cheng, C. L., Chen, S. T., Wu, C. H., Hsu, L. J., Lee, J. Y., Chao, S. C., Sheen, M. C., Shen, C. L., Chang, N. S. and Sheu, H. M. (2005) WOX1 is essential for UVB irradiation-induced apoptosis and down-regulated via translational blockade in UVB-induced cutaneous squamous cell carcinoma in vivo. Clin Cancer Res 11:5769–77
57. Chang, Y. C., Chiu, Y. F., Liu, P. H., Shih, K. C., Lin, M. W., Sheu, W. H., Quertermous, T., Curb, J. D., Hsiung, C. A., Lee, W. J., Lee, P. C., Chen, Y. T., and Chuang, L. M. (2012) Replication of genome-wide association signals of type 2 diabetes in Han Chinese in a prospective cohort. Clin Endocrinol (Oxf) 76, 365-372
58. Ferguson, B. W., Gao, X., Kil, H., Lee, J., Benavides, F., Abba, M. C., and Aldaz, C. M. (2012) Conditional Wwox deletion in mouse mammary gland by means of two Cre recombinase approaches. PLoS One 7, e36618
59. Huang, Y. H., Chang, N. S., and Tseng, S. H. (2015) Expression of WW domain-containing oxidoreductase WWOX in pterygium. Mol Vis 21, 711-717
60. Aqeilan, R. I., Hagan, J. P., de Bruin, A., Rawahneh, M., Salah, Z., Gaudio, E., Siddiqui, H., Volinia, S., Alder, H., Lian, J. B., Stein, G. S., and Croce, C. M. (2009) Targeted ablation of the WW domain-containing oxidoreductase tumor suppressor leads to impaired steroidogenesis. Endocrinology 150, 1530-1535
61. Ludes-Meyers, J. H., Kil, H., Parker-Thornburg, J., Kusewitt, D. F., Bedford, M. T., and Aldaz, C. M. (2009) Generation and characterization of mice carrying a conditional allele of the Wwox tumor suppressor gene. PLoS One 4, e7775
62. Desmedt C., Ruíz-García E. and André F. (2008) Gene expression predictors in breast cancer: current status, limitations and perspectives. Eur J Cancer. 44(18):2714-20.
63. Goldhirsch, A., Wood, W. C., Coates, A. S., Gelber, R. D., Thürlimann, B., Senn, H. J. and Panel members. (2011) Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 22(8):1736-47.
64. Dent, R., Trudeau, M., Pritchard, K. I., Hanna, W. M., Kahn, H. K., Sawka, C. A., Lickley, L. A., Rawlinson, E., Sun, P. and Narod, S. A. (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 13(15 Pt 1):4429-34.
65. Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., Deng, S., Johnsen, H., Pesich, R., Geisler, S., Demeter, J., Perou, C. M., Lønning, P. E., Brown, P. O., Børresen-Dale, A. L. and Botstein, D. (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 100(14):8418-23.
66. Ge, F., Chen, W., Yang, R., Zhou, Z., Chang, N., Chen, C., Zou, T., Liu, R., Tan, J. and Ren, G. (2014) WWOX suppresses KLF5 expression and breast cancer cell growth. Chin J Cancer Res. 26(5):511-6.
67. Guler, G., Huebner, K., Himmetoglu, C., Jimenez, R. E., Costinean, S., Volinia, S., Pilarski, R. T., Hayran, M. and Shapiro, C. L. (2009) Fragile histidine triad protein, WW domain-containing oxidoreductase protein Wwox, and activator protein 2gamma expression levels correlate with basal phenotype in breast cancer. Cancer 115:899-908.
68. Cheang, M. C., Voduc, D., Bajdik, C., Leung, S., McKinney, S., Chia, S. K., Perou, C. M. and Nielsen, T. O. (2008) Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res. 14:1368–76.
69. Hsu, L. J., Schultz, L., Hong, Q., Van Moer, K., Heath, J., Li, M. Y., Lai, F. J., Lin, S. R., Lee, M. H., Lo, C. P., Lin, Y. S., Chen, S. T. and Chang, N. S. (2016) Transforming growth factor beta1 signaling via interaction with cell surface Hyal-2 and recruitment of WWOX/WOX1. J Biol Chem. 284:16049-59.
70. Huang, S. S., Su, W. P., Lin, H. P., Kuo, H. L., Wei, H. L. and Chang, N. S. (2016) Role of WW domain-containing oxidoreductase WWOX in Driving T Cell Acute Lymphoblastic Leukemia Maturation. J Biol Chem. 291:17319-31.
71. Stern, R. (2003) Devising a pathway for hyaluronan catabolism: are we there yet? Glycobiology. 13:105r-15r.
72. Sherman, L. S., Matsumoto, S., Su, W., Srivastava, T. and Back, S. A. (2015) Hyaluronan Synthesis, Catabolism, and Signaling in Neurodegenerative Diseases. Int J Cell Biol. 2015:368584. Review.
73. Schmaus, A., Bauer, J. and Sleeman, J. P. (2014) Sugars in the microenvironment: the sticky problem of HA turnover in tumors. Cancer Metastasis Rev. 33:1059-79.
74. McAtee, C. O., Barycki, J. J. and Simpson, M. A. (2014) Emerging roles for hyaluronidase in cancer metastasis and therapy. Adv Cancer Res. 123:1-34.
75. Hsu, L. J., Hong, Q., Chen, S. T., Kuo, H. L., Schultz, L., Heath, J., Lin, S. R., Lee, M. H., Li, D. Z., Li, Z. L., Cheng, H. C., Armand, G. and Chang, N. S. (2017) Hyaluronan activates Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed. Oncotarget 8, 19137-19155
76. Kuo, H. L., Ho, P. C., Huang, S. S. and Chang, N. S. (2018) Chasing the signaling run by tri-molecular time-lapse FRET microscopy. Cell Death Discovery 4:45
77. Lee, M. H., Su, W. P., Wang, W. J., Lin, S. R., Lu, C. Y., Chen, Y. A., Chang, J. Y., Huang, S. S., Chou, P. Y., Ye, S. R., Chen, S. J., He, H., Liu, T. H., Chou, Y. T., Hsu, L. J., Lai, F. J., Chen, S. J., Lee, H. C., Kakhniashvili, D., Goodman, S. R. and Chang, N. S. (2015) Zfra activates memory Hyal-2+ CD3- CD19- spleen cells to block cancer growth, stemness, and metastasis in vivo. Oncotarget 6, 3737-3751.
78. Su, W. P., Wang, W. J., Sze, C. I. and Chang, N. S. (2016) Zfra induction of memory anticancer response via a novel immune cell. Oncoimmunology 5, e1213935.
79. Hong, Q., Hsu, L. J., Schultz, L., Pratt, N., Mattison, J., and Chang, N. S. (2007) Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-kappaB, JNK1, p53 and WOX1 during stress response. BMC Mol Biol 8, 50
80. Lee, M. H., Shih, Y. H., Lin, S. R., Chang, J. Y., Lin, Y. H., Sze, C. I., Kuo, Y. M., Chang, N. S. (2017) Zfra restores memory deficits in Alzheimer’s disease triple transgenic mice by blocking aggregation of TRAPPC6AΔSH3GLB2, tau and amyloid-βand inflammatory NF-κB activation. Alzheimers Dementia (N Y) 3, 189-204.
81. Huang, S. S. and Chang, N. S. (2018) Phosphorylation/de-phosphorylation in specific sites of tumorsuppressor WWOX and control of distinct biological events. Exp Biol Med (Maywood) 243, 137-147.
82. Hsu, L. J., Chiang, M. F., Sze, C. I., Su, W. P., Yap, Y. V., Lee, I. T., Kuo, H. L. and Chang, N. S. (2016) HYAL-2-WWOX-SMAD4 Signaling in Cell Death and Anticancer Response. Front Cell Dev Biol 4, 141.
83. Chang, H. T., Liu, C. C., Chen, S. T., Yap, Y. V., Chang, N. S., and Sze, C. I. (2014) WW domain-containing oxidoreductase in neuronal injury and neurological diseases. Oncotarget 5, 11792-11799
84. Chang, N. S. (2015) In Memoriam: Shur-Tzu (Su) Chen, a pioneer in tumor suppressor WWOX for neuroscience. J Biomed Sci 22, 39
85. Chang, N. S. (2015) Introduction to a thematic issue for WWOX. Exp Biol Med (Maywood) 240, 281-284
86. Sze, C. I., Su, M., Pugazhenthi, S., Jambal, P., Hsu, L. J., Heath, J., Schultz, L., and Chang, N. S. (2004) Down-regulation of WW domain-containing oxidoreductase induces Tau phosphorylation in vitro. A potential role in Alzheimer's disease. J Biol Chem 279, 30498-30506
87. Wang, H. Y., Juo, L. I., Lin, Y. T., Hsiao, M., Lin, J. T., Tsai, C. H., Tzeng, Y. H., Chuang, Y. C., Chang, N. S., Yang, C. N., and Lu, P. J. (2012) WW domain-containing oxidoreductase promotes neuronal differentiation via negative regulation of glycogen synthase kinase 3beta. Cell Death Differ 19, 1049-1059
88. Amijee, H., and Scopes, D. I. (2009) The quest for small molecules as amyloid inhibiting therapies for Alzheimer's disease. J Alzheimers Dis 17, 33-47
89. Lee, M. H., Lin, S. R., Chang, J. Y., Schultz, L., Heath, J., Hsu, L. J., Kuo, Y. M., Hong, Q., Chiang, M. F., Gong, C. X., Sze, C. I., and Chang, N. S. (2010) TGF-beta induces TIAF1 self-aggregation via type II receptor-independent signaling that leads to generation of amyloid beta plaques in Alzheimer's disease. Cell Death Dis 1, e110
90. Hamilton, G., Harris, S. E., Davies, G., Liewald, D. C., Tenesa, A., Starr, J. M., Porteous, D., and Deary, I. J. (2011) Alzheimer's disease genes are associated with measures of cognitive ageing in the lothian birth cohorts of 1921 and 1936. Int J Alzheimers Dis 2011, 505984
91. Chang, J. Y., Lee, M. H., Lin, S. R., Yang, L. Y., Sun, H. S., Sze, C. I., Hong, Q., Lin, Y. S., Chou, Y. T., Hsu, L. J., Jan, M. S., Gong, C. X., and Chang, N. S. (2015) Trafficking protein particle complex 6A delta (TRAPPC6ADelta) is an extracellular plaque-forming protein in the brain. Oncotarget 6, 3578-3589
92. Morris, S. W., Kirstein, M. N., Valentine, M. B., Dittmer, K. G., Shapiro, D. N., Saltman, D. L. and Look, A. T. (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 263:1281–4.
93. Robertson, F. M., Petricoin Iii, E. F., Van Laere, S. J., Bertucci, F., Chu, K., Fernandez, S. V., Mu, Z., Alpaugh, K., Pei, J., Circo, R., Wulfkuhle, J., Ye, Z., Boley, K. M., Liu, H., Moraes, R., Zhang, X., Demaria, R., Barsky, S. H., Sun, G. and Cristofanilli, M. (2013) Presence of anaplastic lymphoma kinase in inflammatory breast cancer. Springerplus. 2:497
94. Ceritinib Gains FDA Approval for Lung Cancer. (2014) Cancer Discovery 4:753-754. (News in Brief)
95. Abdul, K. Siraj, Shaham Beg, Zeenath Jehan, Sarita Prabhakaran, Maqbool Ahmed, Azhar R.Hussain, Fouad Al-Dayel, Asma Tulbah, Dahish Ajarim and Khawla S. Al-Kuraya. (2015) ALK alteration is a frequent event in aggressive breast cancers. Breast Cancer Research 17:127
96. Weerasinghe, P. and Buja, L. M. (2012) Oncosis: an important non-apoptotic mode of cell death. Exp. Mol. Pathol. 93(3):302-8.
97. G. Majno and I. Joris (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol. 146 (1) 3–15.
98. Sun, Y., Yu, J., Liu, X., Zhang, C,. Cao, J., Li, G., Liu, X., Chen, Y. and Huang, H. (2018) Oncosis-like cell death is induced by berberine through ERK1/2-mediated impairment of mitochondrial aerobic respiration in gliomas. Biomed Pharmacother. 102:699-710.
99. Patrick J Roberts. (2013) Clinical use of crizotinib for the treatment of non-small cell lung cancer. Biologics. 7: 91–101
100. Chang, N. S. (2002) The non-ankyrin C terminus of IκBα physically interacts with p53 in vivo and dissociates in response to apoptotic stress, hypoxia, DNA damage, and transforming growth factor-β1-mediated growth suppression. J. Biol. Chem. 277, 10323–10331
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw