系統識別號 U0026-2808201720412700
論文名稱(中文) 封膠黏彈特性分析及其於條形封裝翹曲模擬之應用
論文名稱(英文) Analysis of Viscoelastic Behavior of Epoxy Molding Compound and its Application in the Warpage Simulation of Strip Molded Electronic Packages
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 殷煒傑
研究生(英文) Wei-Jie Yin
學號 N16044488
學位類別 碩士
語文別 中文
論文頁數 84頁
口試委員 指導教授-屈子正
中文關鍵字 封膠  黏彈  翹曲  物理老化 
英文關鍵字 epoxy molding compound  viscoelastic  physical aging  strip warpage 
中文摘要 電子元件在封裝製程中,若產生過大翹曲將導致連結對位不易而使產品生產良率降低。近年來消費性電子產品快速發展,具備多樣性的功能,內部積體電路元件更走向輕、薄、短、小及更多I/O腳位的趨勢元件翹曲的影響更為顯著。而在電子產品長時間使用下,翹曲衍生之殘留應力也易造成元件提早失效。由於電子封裝中的封膠高分子複合材料,具有明顯的黏彈性行為且在不同的溫度下會發生硬化、化學與物理老化反應,這些反應都會造成材料體積上的變化,進而使封裝體產生翹曲,為了更準確預測翹曲行為,正確描述封裝體上材料本構行為是必要的。
英文摘要 Epoxy molding compound (EMC) is widely used in electronic packages for encapsulating the Si die. During packaging thermal processes, the thermal expansion mismatch between various packaging materials and physical or chemical aging induced EMC volume change would lead to residual stress and warpage. For the purpose of accurately predicting warpage and residual stress in the overmolded electronic packages, the viscoelastic constitutive behavior and the physical aging characteristics were investigated in this study. The viscoelastic behavior of the EMC were measured by quasi-static stress relaxation and creep experiments. Consistency of the viscoelastic behaviors measured from these two experiments were examined and compared to the viscoelastic model constructed from time-harmonic oscillation experiment. From the comparisons between the results of these different characterization approaches, it was found that the viscoelastic behavior measured by creep and relaxation tests are highly consistent, and the presence of physical aging in the test specimen delays the viscoelastic relaxation. In addition, physical aging leads to additional EMC volume shrinkage after cooling from above to below glass transition temperature. Warpage simulations for molded package strips by using the viscoelastic models were validated by the experimentally measured values. It was shown that the strip warpage is significantly influenced by viscoelastic relaxation and physical aging of the EMC.
論文目次 摘要 I
英文延伸摘要 II
表目錄 XVII
符號說明 XXII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.2.1 高分子黏彈材料特性 2
1.2.2 封裝翹曲與模擬應用 5
1.3 研究目的與方法 7
第二章 理論基礎 9
2.1 物理老化 9
2.2 高分子材料之線黏彈行為 12
2.2.1 線黏彈材料之基本數學模型 14
2.2.2 線黏彈行為之疊合原理 16
2.2.3 線黏彈本構模型 18
2.2.4 時間─溫度疊合(time-temperature superposition , TTS)原理 20
2.2.5 數值轉換近似法 22
第三章 封膠特性量測與分析 25
3.1封膠材料與試件製備 25
3.2 物理老化黏彈特性量測 26
3.2.1 應力鬆弛實驗 27
3.2.2 潛變實驗 38
3.2.3 比較與討論 47
3.3 物理老化過程中的體積變化 53
3.4 模擬製程回冷過程實驗 58
第四章 條形封裝翹曲模擬應用 61
4.1 8x9 超薄型細間距球柵陣列條形封裝件 61
4.1.1 有限元素模型建立 61
4.1.2 材料性質 62
4.1.3 翹曲實驗量測 64
4.1.4 翹曲模擬與實驗比較分析 66
4.2 8x6 超薄型細間距球柵陣列條形封裝件 68
4.2.1 有限元素模型建立 68
4.2.2 材料性質 69
4.2.3 翹曲模擬與實驗比較分析 71
第五章 結論與未來研究 78
5.1 結論 78
5.2 未來研究 79
參考文獻 80
參考文獻 [1]J. D. Ferry, “Viscoelastic Properties of Polymer”, 3rd Edtion, John Wiley and Sons Inc., New York, 1980.
[2]Y. K. Kim and S. R.White, “Stress Relaxation Behavior of 3501-6 Epoxy Resin During Cure”, Polym. Eng. Sci. Vol. 36. 2852, 1996.
[3]R. A. Schapery and S. W. Park, “Methods of Interconversion between Linear Viscoelastic Material Functions. Part II – An Approximate Analytical Method”, International Journal of Solids and Structures, vol. 36, pp. 1677-1699, 1999.
[4]S. L. Simon, G. B. McKenna and O. Sindt, “Modeling the evolution of the dynamic mechanical properties of a commercial epoxy during cure after gelation”, Journal of Applied Polymer Science, vol. 76, pp. 495-50, 2000.
[5]D. J. O' Brien, P. T. Mather and S. R. White, “Viscoelastic Properties of an Epoxy Resin during Cure”, Journal of Composite Materials, vol. 35, pp. 883-904, May 15, 2001.
[6]R. B. R. Van Silfhout, J. G. J. Beijer, K. Zhang and W. D. van Driel, “Modeling methodology for linear elastic compound modeling versus visco-elastic compound modeling”, Proc. 6th. Int. Conf. Therm. And Mech. Simul. Exp. Microelectron. MicroSyst, EuroSimE 2005, Berlin, Germany, p.483, 2005.
[7]D. G. Yang, K. M. B. Jansen, L. J. Ernst, G. Q. Zhang, H. J. L. Bressers and J. H. J. Janssen, “Effect of filler concentration of rubbery shear and bulk modulus of molding compounds”, Mircroelectronics reliability, Vol. 47, pp. 233-239, 2007.
[8]M. Sadeghinia, K. M. B. Jansen and L. J. Ernst, “Characterization of the viscoelastic properties of an epoxy molding compound during cure”, Microelectronics Reliability, vol. 52, pp. 1711-1718, 2012.
[9]L. C. E. Struik, ‘Physical Aging in Plastics and Other Glassy Materials”, Polymer Engineering and Science, March, Vol. 17, No. 3, pp. 165-173, 1977.
[10]R. Greiner and F. R. Schwarzl, “Volume relaxation and physical aging of amorphous polymers. I. Theory of volume relaxation after single temperature jumps”, Colloid & Polymer Science, Vol. 267, pp. 39-47, 1989.
[11]M. E. Nichol, S. S. Wang and P. H. Geil, “Creep and physical aging in a polyamideimide carbon fiber composite”, Journal of Macromolecular Science,Vol. B29, pp. 303-336, 1990
[12]L. Catherine Brinson, “Effects of Physical Aging on Long Term Creep of Polymers and Polymer Matrix Conposites”, Int. J. Solids Structures Vol. 32, No. 6/7, pp. 827-846, 1995.
[13]Yunlong Guo, Ni Wang, Roger d. Bradshaw, L. Catherine Brinson, “Modeling Mechanical Aging Shift Factors in Glassy Polymers During Nonisothermal Physical Aging. I. Experiments and KAHR-ate Model Prediction”, Journal of Polymer Science Part B:Polymer Physics, Vol. 47, pp. 340-352, 2008.
[14]G. M. Odegard and A. Bandyopadhyay, “Physical Aging of Epoxy Polymers and Their Composites”, Journal of Polymer Science Part B:Polymer Physics, Vol. 49, pp. 1695-1716 , 2011.
[15]Rui Miranda Guedes, Jose Lopes Morais, “A simple and effective scheme for data reduction of stress relaxation incorporating physical-aging effect: An analytical and numerical analysis”, Polymer Testing 32, pp. 961-971, 2013.
[16]Tsrong-Yi Wen and Shih-Chang Ku, “Efficient Evaluation of Substrate Warpage by Finite Element Method and Factorial Design Analysis”, 2007 Electronic Components and Technology Conference, pp. 1754-1758, 2007.
[17]S. Rzepka and A. Muller, “The effect of viscoelasticity on the result accuracy of FEM panel warpage simulations supporting industrial microelectronics packaging”, Proceeding of the International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems EuroSime2007, pp. 1-8, 2007.
[18]Wei Lin, Min Woo Lee, “PoP/CSP Warpage Evaluation and Viscoelastic Modeling”, Electronic Components & Technology Conference, pp. 1576-1581, 2008.
[20]L. O. McCaslin, S. Yoon, H. Kim, Suresh K. Sitaraman, “Methodology for Modeling Substrate Warpage Using Copper Trace Pattern Implementation”, 2009 IEEE Transactions on Advanced Packaging, Vol. 32, No. 4, pp. 740-745, 2009.
[21]Wei Lin, JH Na, “A Novel Method for Strip Level Warpage Simulation of PoP Package During Assembly”, 2010 Electronic Components and Technology Conference, pp. 54-90, 2010.
[22]MyoungSu Chae, Eric Ouyang, “Strip Warpage Analysis of a Flip Chip Package Considering the Mold Compound Processing Parameters”, 2013 Electronic Components & Technology Conference , pp. 441-448 , 2013.
[23]T.-C. Chiu, C.-L. Kung, H.-W. Huang and Y.-S. Lai, “Effects of curing and chemical aging on warpage – characterization and simulation”, IEEE Transactions on Device and Materials Reliability, Vol. 11, pp. 339-348, 2011.
[28]F. Simon and Z. Anorg, Allgem. Chem. 203, 219, 1931
[29]Richard E. Robertson, “Theory for the Plasticity of Glassy Polymers”, The Journal of Chemical Physics 44, 3950, 1966
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-09-01起公開。

  • 如您有疑問,請聯絡圖書館