進階搜尋


 
系統識別號 U0026-2808201709361900
論文名稱(中文) 經磷摻雜之還原氧化石墨烯電極於同時偵測多巴胺及尿酸之應用
論文名稱(英文) Phosphorus-doped reduced graphene oxide electrodes for simultaneous detection of dopamine and uric acid
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 黃煒婷
研究生(英文) Wei-Ting Huang
學號 N36044181
學位類別 碩士
語文別 中文
論文頁數 134頁
口試委員 指導教授-楊明長
口試委員-周澤川
口試委員-何國川
口試委員-黃炳照
口試委員-林家裕
中文關鍵字 磷摻雜  還原氧化石墨烯  電化學感測器  多巴胺  尿酸 
英文關鍵字 Phosphorus-doped  reduced graphene oxide  electrochemical sensors  dopamine  uric acid 
學科別分類
中文摘要 多巴胺 (dopamine, DA) 與尿酸 (uric acid, UA) 是人體內重要的生物分子,許多疾病與它們的濃度息息相關。當多巴胺濃度過高或過低,可能與精神分裂症、帕金森氏症相關,而高濃度的尿酸與高尿酸血症、痛風相關,故即時監測體內多巴胺與尿酸的濃度,有助於人們對自我健康的管理,作為預防疾病的早期訊號。採用電化學方法偵測多巴胺與尿酸的濃度十分快速且簡便,但以一般電極偵測多巴胺與尿酸時,兩個物質的氧化電位過於接近導致選擇性差,且過大的尿酸氧化峰電流會影響多巴胺氧化峰電流,導致無法正確判讀多巴胺濃度,發展可提高同時偵測多巴胺與尿酸選擇性且擁有高多巴胺靈敏度的修飾電極能夠解決此難題。
本研究以低成本並簡易的方法製備磷摻雜之還原氧化石墨烯,使用三苯基磷作為磷源,經由高溫熱處理同時將氧化石墨烯還原並進行磷摻雜,形成磷摻雜之還原氧化石墨烯 (phosphorus-doped reduced graphene oxide)。磷摻雜之還原氧化石墨烯在同時偵測多巴胺及尿酸時峰電位差146 mV,具有不錯的選擇性,及優異的氧化峰電流值對背景電流之比值,能簡易且正確地判讀氧化峰電流值。
本研究中,以30 mg氧化石墨烯與1050 mg三苯基磷在900℃熱處理1小時,所得的經磷摻雜之還原氧化石墨烯具有微量磷原子摻入。經微分脈衝伏安法 (differential pulse voltammetry, DPV) 結果顯示,此條件可得最高的多巴胺靈敏度0.3261 μA/μM,感測濃度範圍1-25 μM,此時,尿酸靈敏度為0.0229 μA/μM,感測濃度範圍5-1000 μM。
英文摘要 A low-cost and simple fabrication of phosphorus-doped reduced graphene oxide (PTRG) was performed by using triphenylphosphine (TPP) as phosphorus source and simultaneously phosphorus-doping and reducing the graphene oxide through thermal annealing. Compared with screen-printed carbon electrode (SPCE) and several carbon materials modified electrodes, the PTRG electrode had the highest oxidation peak current to background current ratio for dopamine (DA) detection. For simultaneous sensing of DA and uric acid (UA), two well-separated voltammetry peaks were obtained with the PTRG electrode in differential pulse voltammetry (DPV) measurements, and the oxidation peak between DA and UA was 146 mV. The linear response ranges for the determination of DA and UA were 1-25 μM and 5-1000 μM, respectively. The attractive features of the PTRG provided potential applications on the simultaneous determination of DA and UA.
論文目次 摘要 I
致謝 XII
目錄 XIII
圖目錄 XVI
表目錄 XXI
第一章 緒論 1
1.1 前言 1
1.2 生物感測器 2
1.2.1 生物感測器的基本結構與原理 2
1.2.2 生物感測器起源 3
1.2.3 依感測元件分類生物感測器 3
1.2.4 依感測元件的結合方式分類生物感測器 4
1.2.5 依轉換元件分類生物感測器 5
1.2.6 感測電極修飾方法 11
1.3 待測物質介紹 13
1.3.1 多巴胺 13
1.3.2 尿酸 14
1.3.3 多巴胺、尿酸感測原理 15
第二章 原理與文獻回顧 17
2.1 電化學原理 17
2.1.1 循環伏安分析原理 18
2.1.2 微分脈衝伏安分析原理 21
2.2 石墨烯 (Graphene) 及還原氧化石墨烯 (Reduced graphene oxide) 22
2.2.1 石墨烯及還原氧化石墨烯製備方法 23
2.2.2 石墨烯與還原氧化石墨烯的表面修飾 24
2.3 感測多巴胺與尿酸電極的種類 25
2.3.1 玻璃碳電極 (Glassy carbon electrode, GCE) 26
2.3.2 金電極 (Gold electrode) 27
2.3.3 網版印刷電極 (Screen-printed electrode, SPE) 27
2.4 研究動機 28
第三章 實驗方法 29
3.1 實驗藥品 29
3.2 實驗儀器 30
3.3 實驗步驟 31
3.3.1 溶液配製 31
3.3.2 氧化石墨烯製備 (Graphene oxide, GO) 31
3.3.3 還原氧化石墨烯製備 32
3.3.4 感測電極製備 33
3.3.5 感測器之電化學系統 34
3.3.6 感測電極前處理 36
3.3.7 感測器之電化學分析 36
3.3.8 感測電極再現性測試 39
3.4 碳材特性分析 39
3.4.1 穿透式電子顯微鏡分析 (Transmission electron microscopy, TEM) 39
3.4.2 掃描式電子顯微鏡分析 (Scanning electron microscopy, SEM) 40
3.4.3 能量散射光譜儀 (Energy dispersive spectrometer, EDS) 40
3.4.4 化學分析電子光譜儀 (Electron spectroscopy for chemical analysis, ESCA) 40
第四章 結果與討論 41
4.1 碳材對感測能力的影響 41
4.1.1 感測能力比較 41
4.1.2 綜合討論 46
4.2 磷摻雜之還原氧化石墨烯 (PTRG) 48
4.2.1 微分脈衝伏安法 (DPV) 參數的探討 48
4.2.2 掃描速率對感測能力的影響 51
4.2.3 待測液pH值對感測能力的影響 53
4.2.4 漿料中Nafion濃度對感測能力的影響 57
4.2.5 電極製備再現性測試 59
4.3 磷前驅物添加量對感測能力的影響 60
4.3.1 掃描式電子顯微鏡分析 (SEM) 60
4.3.2 能量散射光譜儀分析 (EDS) 62
4.3.3 穿透式電子顯微鏡分析 (TEM) 63
4.3.4 感測能力分析 69
4.4 熱處理溫度對感測能力的影響 84
4.4.1 穿透式電子顯微鏡分析 (TEM) 84
4.4.2 化學電子能譜儀分析 (XPS) 89
4.4.3 感測能力分析 91
4.4.4 綜合討論 97
第五章 結論 103
參考文獻 105
參考文獻 1. 西岡久壽樹, 圖解家庭醫學痛風不要來. 2008, 尖端出版社.
2. Zhang, B., D. Huang, X. Xu, G. Alemu, Y. Zhang, F. Zhan, Y. Shen, and M. Wang, Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid with helical carbon nanotubes. Electrochimica Acta, 2013. 91: p. 261-266.
3. Yue, Y., G. Hu, M. Zheng, Y. Guo, J. Cao, and S. Shao, A mesoporous carbon nanofiber-modified pyrolytic graphite electrode used for the simultaneous determination of dopamine, uric acid, and ascorbic acid. Carbon, 2012. 50(1): p. 107-114.
4. Kaur, B., T. Pandiyan, B. Satpati, and R. Srivastava, Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode. Colloids and Surfaces B: Biointerfaces, 2013. 111: p. 97-106.
5. Huang, J., Y. Liu, H. Hou, and T. You, Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Biosensors and Bioelectronics, 2008. 24(4): p. 632-637.
6. Xu, T.-Q., Q.-L. Zhang, J.-N. Zheng, Z.-Y. Lv, J. Wei, A.-J. Wang, and J.-J. Feng, Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide. Electrochimica Acta, 2014. 115: p. 109-115.
7. Wang, C., J. Du, H. Wang, C.e. Zou, F. Jiang, P. Yang, and Y. Du, A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sensors and Actuators B: Chemical, 2014. 204: p. 302-309.
8. Eggins, B.R., Biosensors. 1996: WILEY TEUBNER.
9. Cunningham, A.J., Introduction to bioanalytical sensors. 1998: Wiley-Interscience.
10. Thévenot, D.R., K. Toth, R.A. Durst, and G.S. Wilson, Electrochemical biosensors: recommended definitions and classification1International Union of Pure and Applied Chemistry: Physical Chemistry Division, Commission I.7 (Biophysical Chemistry); Analytical Chemistry Division, Commission V.5 (Electroanalytical Chemistry).1. Biosensors and Bioelectronics, 2001. 16(1): p. 121-131.
11. Clark, L.C. and C. Lyons, ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY. Annals of the New York Academy of Sciences, 1962. 102(1): p. 29-45.
12. 許耀維、許梅娟, 生醫微檢測晶片. 化工技術. Vol. 21. 2013. 138-161.
13. Campàs, M., B. Prieto-Simón, and J.-L. Marty, A review of the use of genetically engineered enzymes in electrochemical biosensors. Seminars in Cell & Developmental Biology, 2009. 20(1): p. 3-9.
14. Lê, H.Q.A., H. Sauriat-Dorizon, and H. Korri-Youssoufi, Investigation of SPR and electrochemical detection of antigen with polypyrrole functionalized by biotinylated single-chain antibody: A review. Analytica Chimica Acta, 2010. 674(1): p. 1-8.
15. Wang, J., Electrochemical nucleic acid biosensors. Analytica Chimica Acta, 2002. 469(1): p. 63-71.
16. Rogers, K.R., Principles of affinity-based biosensors. Molecular Biotechnology, 2000. 14(2): p. 109-129.
17. Ronkainen, N.J., H.B. Halsall, and W.R. Heineman, Electrochemical biosensors. Chemical Society Reviews, 2010. 39(5): p. 1747-1763.
18. Shrivastava, A. and V. Gupta, Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2011. 2(1): p. 21-21.
19. Bratov, A., N. Abramova, and A. Ipatov, Recent trends in potentiometric sensor arrays—A review. Analytica Chimica Acta, 2010. 678(2): p. 149-159.
20. Kida, T., M.-H. Seo, S. Kishi, Y. Kanmura, and K. Shimanoe, Preparation and measurement of standard organic gases using a diffusion method and a NASICON-based CO 2 sensor combined with a combustion catalyst. Analytical Methods, 2011. 3(8): p. 1887-1892.
21. Stetter, J.R. and J. Li, Amperometric Gas SensorsA Review. Chemical Reviews, 2008. 108(2): p. 352-366.
22. Holt-Hindle, P., S. Nigro, M. Asmussen, and A. Chen, Amperometric glucose sensor based on platinum–iridium nanomaterials. Electrochemistry Communications, 2008. 10(10): p. 1438-1441.
23. Kriz, D., M. Kempe, and K. Mosbach, Introduction of molecularly imprinted polymers as recognition elements in conductometric chemical sensors. Sensors and Actuators B: Chemical, 1996. 33(1): p. 178-181.
24. Arnold, M.A., Fiber-optic biosensors. Journal of biotechnology, 1990. 15(3): p. 219-228.
25. Leung, A., P.M. Shankar, and R. Mutharasan, A review of fiber-optic biosensors. Sensors and Actuators B: Chemical, 2007. 125(2): p. 688-703.
26. P.Bergveld, ISFET, Theory and Practice in IEEE SENSOR CONFERENCE TORONTO. 2003. p. 1-26.
27. Skládal, P., Piezoelectric quartz crystal sensors applied for bioanalytical assays and characterization of affinity interactions. Journal of the Brazilian Chemical Society, 2003. 14: p. 491-502.
28. Elhomsy, G. Dopamine. 2014; Available from: http://emedicine.medscape.com/article/2088959-overview.
29. McAuley, P.D.D. Laboratory (Lab) Uric Acid Values. 2015; Available from: http://www.globalrph.com/labs.htm.
30. Salem, F.B., Spectrophotometric and titrimetric determination of catecholamines. Talanta, 1987. 34(9): p. 810-812.
31. Mamiński, M., M. Olejniczak, M. Chudy, A. Dybko, and Z. Brzózka, Spectrophotometric determination of dopamine in microliter scale using microfluidic system based on polymeric technology. Analytica chimica acta, 2005. 540(1): p. 153-157.
32. Guan, C., J. Ouyang, Q. Li, B. Liu, and W. Baeyens, Simultaneous determination of catecholamines by ion chromatography with direct conductivity detection. Talanta, 2000. 50(6): p. 1197-1203.
33. Kanďár, R., P. Drábková, and R. Hampl, The determination of ascorbic acid and uric acid in human seminal plasma using an HPLC with UV detection. Journal of Chromatography B, 2011. 879(26): p. 2834-2839.
34. Chicharro, M., A. Sánchez, E. Bermejo, A. Zapardiel, M.D. Rubianes, and G.A. Rivas, Carbon nanotubes paste electrodes as new detectors for capillary electrophoresis. Analytica chimica acta, 2005. 543(1): p. 84-91.
35. Fanguy, J.C. and C.S. Henry, The analysis of uric acid in urine using microchip capillary electrophoresis with electrochemical detection. Electrophoresis, 2002. 23(5): p. 767-773.
36. Ross, M.A., Determination of ascorbic acid and uric acid in plasma by high-performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 1994. 657(1): p. 197-200.
37. Yue‐dong, Y., Simultaneous determination of creatine, uric ccid, creatinine and hippuric acid in urine by high performance liquid chromatography. Biomedical Chromatography, 1998. 12(2): p. 47-49.
38. 何敏夫, 臨床生化學. 1992: 合記圖書出版社.
39. Kuralay, F., H. Özyörük, and A. Yıldız, Amperometric enzyme electrode for urea determination using immobilized urease in poly (vinylferrocenium) film. Sensors and Actuators B: Chemical, 2006. 114(1): p. 500-506.
40. Chen, J.-C., H.-H. Chung, C.-T. Hsu, D.-M. Tsai, A. Kumar, and J.-M. Zen, A disposable single-use electrochemical sensor for the detection of uric acid in human whole blood. Sensors and Actuators B: Chemical, 2005. 110(2): p. 364-369.
41. Sun, C.-L., H.-H. Lee, J.-M. Yang, and C.-C. Wu, The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosensors and Bioelectronics, 2011. 26(8): p. 3450-3455.
42. da Silva, R.P., A.W.O. Lima, and S.H. Serrano, Simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid using a pyrolytic graphite electrode modified into dopamine solution. Analytica chimica acta, 2008. 612(1): p. 89-98.
43. Liu, G., W. Ma, Y. Luo, D.-m. Sun, and S. Shao, Simultaneous determination of uric acid and xanthine using a poly (methylene blue) and electrochemically reduced graphene oxide composite film modified electrode. Journal of analytical methods in chemistry, 2014. 2014.
44. Bard, A.J., L.R. Faulkner, J. Leddy, and C.G. Zoski, Electrochemical methods: fundamentals and applications. Vol. 2. 1980: wiley New York.
45. 胡啟章, 電化學原理與方法. 2002: 五南圖書.
46. Allen J. Bard, L.R.F., Electrochemical Methods 2nd edition. 1980: Wiley.
47. Niu, X., W. Yang, H. Guo, J. Ren, F. Yang, and J. Gao, A novel and simple strategy for simultaneous determination of dopamine, uric acid and ascorbic acid based on the stacked graphene platelet nanofibers/ionic liquids/chitosan modified electrode. Talanta, 2012. 99(0): p. 984-988.
48. Zhang, W., Y. Tang, J. Liu, Y. Ma, L. Jiang, W. Huang, F.-w. Huo, and D. Tian, An electrochemical sensor for detecting triglyceride based on biomimetic polydopamine and gold nanocomposite. Journal of Materials Chemistry B, 2014. 2(48): p. 8490-8495.
49. Wang, H., T. Maiyalagan, and X. Wang, Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. Acs Catalysis, 2012. 2(5): p. 781-794.
50. Ni, Z., H. Wang, J. Kasim, H. Fan, T. Yu, Y. Wu, Y. Feng, and Z. Shen, Graphene thickness determination using reflection and contrast spectroscopy. Nano letters, 2007. 7(9): p. 2758-2763.
51. Liang, Y., Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, and H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature materials, 2011. 10(10): p. 780-786.
52. Neto, A.C., F. Guinea, N.M. Peres, K.S. Novoselov, and A.K. Geim, The electronic properties of graphene. Reviews of modern physics, 2009. 81(1): p. 109.
53. Ndlovu, T., O. Arotiba, S. Sampath, R. Krause, and B. Mamba, Reactivities of modified and unmodified exfoliated graphite electrodes in selected redox systems. International Journal of Electrochemical Science, 2012. 7(10): p. 9441-9453.
54. Novoselov, K.S., A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
55. Li, X., W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009. 324(5932): p. 1312-1314.
56. Berger, C., Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, and A.N. Marchenkov, Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006. 312(5777): p. 1191-1196.
57. Acik, M. and Y.J. Chabal, A review on reducing graphene oxide for band gap engineering. Journal of Materials Science Research, 2012. 2(1): p. 101.
58. Shin, H.J., K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, and J.Y. Choi, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials, 2009. 19(12): p. 1987-1992.
59. Liu, Y., Y. Zhang, G. Ma, Z. Wang, K. Liu, and H. Liu, Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor. Electrochimica Acta, 2013. 88: p. 519-525.
60. Park, S., J. An, J.R. Potts, A. Velamakanni, S. Murali, and R.S. Ruoff, Hydrazine-reduction of graphite-and graphene oxide. Carbon, 2011. 49(9): p. 3019-3023.
61. Raghubanshi, H., M. Hudson, and O. Srivastava, Effect of Ambient Gas Pressure on the Thermal Exfoliation of Graphite Oxide: Tuning the Number of Graphene Sheets. arXiv preprint arXiv: 2013. 1302: p.4220.
62. X. Chen, D. He, and S. Mu, 掺氮石墨烯研究. 化學進展, 2013. 25: p. 1292-1301.
63. Lomeda, J.R., C.D. Doyle, D.V. Kosynkin, W.-F. Hwang, and J.M. Tour, Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. Journal of the American Chemical Society, 2008. 130(48): p. 16201-16206.
64. Mayavan, S., H.-S. Jang, M.-J. Lee, S.H. Choi, and S.-M. Choi, Enhancing the catalytic activity of Pt nanoparticles using poly sodium styrene sulfonate stabilized graphene supports for methanol oxidation. Journal of Materials Chemistry A, 2013. 1(10): p. 3489-3494.
65. Sheng, Z.-H., X.-Q. Zheng, J.-Y. Xu, W.-J. Bao, F.-B. Wang, and X.-H. Xia, Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. Biosensors and Bioelectronics, 2012. 34(1): p. 125-131.
66. Yang, L., S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, and Z. Hu, Boron‐doped carbon nanotubes as metal‐free electrocatalysts for the oxygen reduction reaction. Angewandte Chemie, 2011. 123(31): p. 7270-7273.
67. Liu, Z.W., F. Peng, H.J. Wang, H. Yu, W.X. Zheng, and J. Yang, Phosphorus‐doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angewandte Chemie, 2011. 123(14): p. 3315-3319.
68. Wu, J., Z. Yang, X. Li, Q. Sun, C. Jin, P. Strasser, and R. Yang, Phosphorus-doped porous carbons as efficient electrocatalysts for oxygen reduction. Journal of Materials Chemistry A, 2013. 1(34): p. 9889-9896.
69. Wang, Y., Y. Shao, D.W. Matson, J. Li, and Y. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing. ACS nano, 2010. 4(4): p. 1790-1798.
70. Pumera, M., A. Ambrosi, A. Bonanni, E.L.K. Chng, and H.L. Poh, Graphene for electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry, 2010. 29(9): p. 954-965.
71. Qu, L., Y. Liu, J.-B. Baek, and L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS nano, 2010. 4(3): p. 1321-1326.
72. Wu, Z.-S., S. Yang, Y. Sun, K. Parvez, X. Feng, and K. Müllen, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. Journal of the American Chemical Society, 2012. 134(22): p. 9082-9085.
73. Wu, J., C. Jin, Z. Yang, J. Tian, and R. Yang, Synthesis of phosphorus-doped carbon hollow spheres as efficient metal-free electrocatalysts for oxygen reduction. Carbon, 2015. 82: p. 562-571.
74. Paraknowitsch, J.P. and A. Thomas, Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy & Environmental Science, 2013. 6(10): p. 2839-2855.
75. Yu, D., Y. Xue, and L. Dai, Vertically aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. The journal of physical chemistry letters, 2012. 3(19): p. 2863-2870.
76. Xu, J. and L. Guan, Toward understanding the active site for oxygen reduction reaction on phosphorus-encapsulated single-walled carbon nanotubes. Rsc Advances, 2013. 3(16): p. 5577-5582.
77. Li, R., Z. Wei, X. Gou, and W. Xu, Phosphorus-doped graphene nanosheets as efficient metal-free oxygen reduction electrocatalysts. RSc Advances, 2013. 3(25): p. 9978-9984.
78. Zhang, C., N. Mahmood, H. Yin, F. Liu, and Y. Hou, Synthesis of Phosphorus-Doped Graphene and its Multifunctional Applications for Oxygen Reduction Reaction and Lithium Ion Batteries. Advanced Materials, 2013. 25(35): p. 4932-4937.
79. Niu, F., L.-M. Tao, Y.-C. Deng, Q.-H. Wang, and W.-G. Song, Phosphorus doped graphene nanosheets for room temperature NH 3 sensing. New Journal of Chemistry, 2014. 38(6): p. 2269-2272.
80. Wen, Y., B. Wang, C. Huang, L. Wang, and D. Hulicova‐Jurcakova, Synthesis of Phosphorus‐Doped Graphene and its Wide Potential Window in Aqueous Supercapacitors. Chemistry-A European Journal, 2015. 21(1): p. 80-85.
81. Wang, J., Carbon‐nanotube based electrochemical biosensors: A review. Electroanalysis, 2005. 17(1): p. 7-14.
82. Yang, C., M.E. Denno, P. Pyakurel, and B.J. Venton, Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review. Analytica chimica acta, 2015. 887: p. 17-37.
83. Malinauskas, A., R. Garjonyt, R. Mažeikien, and I. Jurevičiūt, Electrochemical response of ascorbic acid at conducting and electrogenerated polymer modified electrodes for electroanalytical applications: a review. Talanta, 2004. 64(1): p. 121-129.
84. Nakaminami, T., S.-i. Ito, S. Kuwabata, and H. Yoneyama, A biomimetic phospholipid/alkanethiolate bilayer immobilizing uricase and an electron mediator on an Au electrode for amperometric determination of uric acid. Analytical chemistry, 1999. 71(19): p. 4278-4283.
85. Hayat, A. and J. Marty, Disposable Screen Printed Electrochemical Sensors: Tools for Environmental Monitoring. Sensors, 2014. 14(6): p. 10432.
86. Li, Y. and X. Lin, Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly (vinyl alcohol) covalently modified glassy carbon electrode. Sensors and Actuators B: Chemical, 2006. 115(1): p. 134-139.
87. Shakkthivel, P. and S.-M. Chen, Simultaneous determination of ascorbic acid and dopamine in the presence of uric acid on ruthenium oxide modified electrode. Biosensors and Bioelectronics, 2007. 22(8): p. 1680-1687.
88. Wang, X., M. Wu, W. Tang, Y. Zhu, L. Wang, Q. Wang, P. He, and Y. Fang, Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid using a palladium nanoparticle/graphene/chitosan modified electrode. Journal of Electroanalytical Chemistry, 2013. 695: p. 10-16.
89. Goyal, R.N., V.K. Gupta, N. Bachheti, and R.A. Sharma, Electrochemical Sensor for the Determination of Dopamine in Presence of High Concentration of Ascorbic Acid Using a Fullerene-C60 Coated Gold Electrode. Electroanalysis, 2008. 20(7): p. 757-764.
90. Jahani, S. and H. Beitollahi, Selective Detection of Dopamine in the Presence of Uric Acid Using NiO Nanoparticles Decorated on Graphene Nanosheets Modified Screen-printed Electrodes. Electroanalysis, 2016. 28(9): p. 2022-2028.
91. Moreno, M., A.S. Arribas, E. Bermejo, M. Chicharro, A. Zapardiel, M.C. Rodríguez, Y. Jalit, and G.A. Rivas, Selective detection of dopamine in the presence of ascorbic acid using carbon nanotube modified screen-printed electrodes. Talanta, 2010. 80(5): p. 2149-2156.
92. Zen, J.M., Y.Y. Lai, H.H. Yang, and A. Senthil Kumar, Multianalyte sensor for the simultaneous determination of hypoxanthine, xanthine and uric acid based on a preanodized nontronite-coated screen-printed electrode. Sensors and Actuators B: Chemical, 2002. 84(2): p. 237-244.
93. Xu, Y., H. Bai, G. Lu, C. Li, and G. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society, 2008. 130(18): p. 5856-5857.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw