進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2808201620301400
論文名稱(中文) 受氣候變遷影響之臨海場址地下水汙染特徵模擬探析
論文名稱(英文) Simulation of groundwater flow and solvents transport in a coastal industrial site considering climate change
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 梁蜀昀
研究生(英文) Shu-Yun Liang
學號 N48961145
學位類別 博士
語文別 中文
論文頁數 126頁
口試委員 指導教授-李振誥
召集委員-張祖恩
口試委員-陳昭旭
口試委員-徐國錦
口試委員-王建力
口試委員-劉振宇
口試委員-米孝萱
口試委員-張誠信
中文關鍵字 氣候變遷  時頻分析  溶質傳輸  鹽害  協力治理 
英文關鍵字 Climate Change  Time-Frequency Analysis  Solute Transport  Salinization  Collaborative Governance 
學科別分類
中文摘要 台灣在經歷水汙染、空氣污染防治及廢棄物治理階段後,隨著台灣最大工殤- RCA等大型含氯有機溶劑汙染土壤 場址不斷被舉報,地下水環境整治與治理議題開始受到關注,尤其是石化業等高汙染風險產業於產品生產過程中,因產品、原料、添加物等物質入滲於地下環境中,使土壤、地下水受到嚴重汙染,而地下場域存在非均質與不確定性,導致汙染整治困難度相對提高許多,極端天氣與氣候事件更加劇了臨海石化產業之汙染風險。準此,本研究以臨海石化工業區為研究區域,分別就氣候變遷下地下水文時空變化趨勢與時頻分析、水流與溶質傳輸模式模擬等進行研究探討。
地下水場域大多受氣候因素之直接或間接影響,本址之地下水變化驅動亦受降雨入滲與潮汐效應影響顯著,為瞭解上述兩因素與流場變動週期之對應關係,研究採用時頻分析法分析場址2010年5月至2014年6月間10口監測井之地下水趨勢線,就水位時頻分布狀況瞭解各監測井年趨勢水位普遍呈現上升趨勢,且在汛期皆有一高頻率變化之頻峰值出現,表示地下水場域各監測井在同一期間皆受到豪大雨擾動,顯示高強度或長時間的極端降雨對地下水流場影響大,且各監測井皆俱明顯豐枯水之季節性變化(豐越豐、枯越枯);就各別監測井而言,井4、井8受半日潮影響,有明顯振幅變化,離海岸線較遠的井1、井3、井5、井6、井7、井10之振幅則不明顯;另外井2和井9受潮位與人為因素綜合影響,產生非規律性之訊號。
另外,感潮明顯之區位易遭致土壤地下水鹽害,對於埋佈各樣輸送管線於其中的工業區而言,其可能導致老舊管線浸蝕破損引發嚴重汙染危害,為此,本研究建置GMS-Modflow水流模式,針對感潮明顯之井8與感潮不明顯之井3以MT3DMS進行氯離子傳輸模擬,配合流速與鹽分濃度關係式計算,評估場區地下水含鹽狀態。
此研究區為填海造陸之海埔新生地,1994年填海造陸之初,因地下水仍為海水,其氯離子濃度甚高(17,000~28,000 mg/L),土壤中之鹽分一般隨著旱季(平均降雨量114 mm/d)水分蒸發而累積;汛期(平均降雨量463 mm/d)降雨入滲淋洗而脫鹽的過程交替發生而變化,井3所處區域因無海水溢淹補注鹽分且經降雨等淋洗作用脫鹽,其經14 年後氯離子濃度逐漸淡化至3,000 mg/L以下,但距離監測標準628 mg/L尚有一段差距;而感潮明顯之井8因感潮或氣候降雨入滲事件影響,氯離子濃度因入滲補注而提高,使其脫鹽所需時間較長,恐有可能長期維持高氯鹽濃度。
本研究進一步以Modflow&MT3DMS模式運算評估可能之石化汙染物危害狀況。此項研究選用石化汙染場址最常被檢出之單環芳香烴(BTEX)和氯仿作為指標物質,並依據場區配置擇定易造成汙染之區位,進行單一次汙染事件與持續注入汙染之假設性模擬。模擬結果發現BTEX分項物質(二甲苯、苯、甲苯、乙苯)之汙染團皆呈現略圓形狀,顯示本址地下水流動極為緩慢,移流作用在此並無明顯作用,若以單一次汙染於自然衰減狀態下約經5 年才可低於管制標準;而若以持續注入微量汙染之區位,預估6 年後汙染濃度將上升2 倍以上。
氯仿之單一次1.0 mg/L之汙染事件,經5 年自然衰減濃度可降至0.1 mg/L;若持續注入6 年微量汙染,汙染濃度逐漸上升,可能達到6.0 mg/L,若無採用相關整治工法,預計約需數十年至百年自然衰減過程才可使汙染物降至法規標準。
由於研究區目前尚無明顯汙染狀況,建議可以預先防範之觀點,針對易受汙染之區位進行監測井設定效益評估,並進一步發展氣候變遷下臨海石化業汙染潛勢指標系統,配合地理資訊系統繪製汙染潛勢地圖,據此規劃協力治理策略,降低汙染事件之發生機會。
英文摘要 SUMMARY
The study examined groundwater hydrogeochemistry of the shallow aquifer by analyzing water quality of the monitoring wells set in the offshore industrial park. The Groundwater Modelling System (GMS) was used to construct a hydrological model. The tidal influence was considered in transient simulation to assess the influence of contamination monitoring system. Hydrogeologicae parameters, including top elevation, hydraulic conductivity and rainfall, were used together with data of the groundwater level for the numerical model.
The assessment was made according to ten groundwater monitoring wells – both groundwater level and water quality were considered. In terms of the water level, there was a high frequency peak during each flood season. High-intensity or prolonged rainfall affected groundwater greatly. Seasonal changes of drought and flood were obvious. In terms of the water quality, the result illustrated a significant change of amplitude in well 4 and 8 as a consequence of semidiurnal tidal effects. Inconspicuous amplitude was found in well 1, 3, 5, 6, 7, 10, where were far away from the coast. Non-regularity signals were detected in well 2 and 9. It might be interpreted as an effect of engineering facilities. By modeling the flow and solute transport of the groundwater salt, the study indicated that conspicuous tidal affected well 8 and inconspicuous tidal affected well 3.
The assessment showed water desalinization might take about fourteen years of continual rainfall leaching in the high chloride land reclamation area – twenty years if it goes through seawater intrusion. In relation to pollution caused by salt corrosion of old pipeline, the assessment indicated that BTEX and chloroform might take about five to six years of natural decay toward standard value and be continual contamination in decades.
Key words: Climate Change、Time-Frequency Analysis、Solute Transport、Salinization、Collaborative Governance
INTRODUCTION
Coastal petrochemical industry areas, beucase of the heterogeneity and the uncertainty of the ground field, are mostly vulnerable to pollution. The situation becomes worse if taking the impact of climate change and extreme events into consideration. A high-risk contamination coastal industrial area is chosen in this study for assessment. By considering the temporal trends of groundwater, hydrological drivry factors under climate change and issues of groundwater safety, strategies of adaptation governance were discussed respectively. Time-frequency analysis, relationship between groundwater flow velocity and salt concentration, flow and solute transport model are also applied to access those issues.
MATERIALS AND METHODS
The study area was composed of clay, silt, sand, and gravel. The groundwater flow rate was approximately 2.7 × 10-4 cm/sec. Water level elevation varied between 0.11~2.5 m. Groundwater flow from the middle of study area to the embracing beach, which was the typical island-type-like distribution of groundwater lens. Other groundwater flows were affected by rainfall leaching and tidal effect. To understand the impact of flow regime, the study used time-frequency analysis to 10 monitoring wells’ groundwater level during May, 2010 to June, 2014. The study also applied Modflow&MT3DMS simulation to access the possibility of chlorinated organic pollution.
RESULTS AND DISCUSSION
The temporal trends of groundwater showed the water level rose generally in all monitoring wells. There was a high frequency peak during each flood season – indicating the water levels of the monitoring wells were disturbed by heavy rainfall. High-intensity or prolonged rainfall affected groundwater greatly. Seasonal changes of drought and flood were obvious. In relation to the individual monitoring wells, there were significant changes of amplitude in well 4 and 8 as a consequence of semidiurnal tidal effects. Inconspicuous amplitude was found in well 1, 3, 5, 6, 7, 10, where were far away from the coast. Non-regularity signals were detected in well 2 and 9. It cound be interpreted as an effect of engineering facilities. By modeling the flow and solute transport of the groundwater salt, the study indicated that conspicuous tidal affected well 8 and inconspicuous tidal affected well 3.
The terrace of this region was reclaimed from the sea. The initial measurement was 28,000~17,000 mg/L for chloride because groundwater here in 1994 was rather fresh but seawater. Normally, soil salinization increased in the drought season (rainfall precipitation is 114 mm/d) due to water evaporation. It decreased in the flood season (rainfall precipitation is 463 mm/d) as a result of rainfall leaching and desalination.
In the monitoring well 3, it took about 14 years for the water quality to be desalinize to less than 3,000 mg/L chloride – in the situation of continual rainfall leaching without seawater intrusion. The desalinization time for monitoring well 8 was hard to estimate because of tidal effect or climate extreme. However, it was expected to have longer desalting time due to occasional recharge of chlorine concentration. The well 8 was also possible to maintain a high chlorine concentration.
BTEX and chloroform, the most detected substances, were selected as the substance of interest in petrochemical contaminated sites for chlorinated organic assessment and single/ continuous modeling. The result showed some of the BTEX plume (xylene, benzene, toluene, and ethylbenzene) would be slightly rounded shape when the groundwater flow was very slow. Advection effect was not significant. It would take about 5 years for regulatory standard at a natural slope by single pollution. The result estimated more than two-times of contamination after 6 years in continuous pollution emission site. A single chloroform pollution incident (1.0 mg/L) could decline to 0.1 mg/L at a natural slope after 5 years, but 6.0 mg/L while continued the pollution emission and would take decades to regulatory standard without any treatment.
CONCLUSION
Since there was no significant pollution in the study area, we offered some recommendations from the precautionary perspectives. First, it was critical to set up the benefit assessment for monitoring wells in vulnerable polluted area, and to develop pollution potential index for coastal petrochemical industry. In addition, developing pollution potential map by geographic information system was critical. Having interrogate and repair pipeline in higher risk areas could effectively reduce the chance of contamination.
論文目次 摘 要 I
謝 誌 VII
目 錄 VIII
表目錄 X
圖目錄 XI
第一章 前言 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 研究架構 4
第二章 文獻回顧 7
2.1 氣候變遷文獻回顧 7
2.1.1 台灣氣候變遷議題治理方陎 8
2.1.2未來:永續治理之倡議 11
2.2 氣候變遷與地下水 12
2.2.1 氣候變遷下水文要素時空變化趨勢 13
2.2.2 地下水位時域/空間變化特徵 21
2.2.3 地下水驅動力分析工具-時頻分析 25
2.2.4 地下水位動態變化分析工具應用- Groundwater Modelling System 26
2.3 石化業地下水汙染潛勢 32
2.3.1 指標汙染物質之物化特性 34
2.3.2 溶質傳輸模式應用 37
2.3.3 溶質傳輸分析工具-MT3DMS 40
第三章 氣候變遷下臨海石化工業區地下水位變動對溶質傳輸之影響 42
3.1 研究區域概述 42
3.1.1地質特徵 43
3.1.2水文特徵 48
3.2 氣候變遷對地下水流場之影響 51
3.2.1 氣候變遷下地下水位變化驅動力分析 51
3.2.2 研究區域降雨變化特徵 58
3.2.3 地下水流場模擬 59
第四章 汙染物傳輸與治理對策 88
4.1 地下水鹽害風險 88
4.2 地下水潛在汙染危害分析 95
4.2.1 LNAPL代表汙染物-BTEX模擬 96
4.2.2 DNAPL代表汙染物-氯仿模擬 102
4.2.3 治理對策 105
第五章 結論與建議 111
5.1 結論 111
5.2建議 112
參考文獻 114
自 述 124
參考文獻 Adger, W. N., N. Brooks, G. Bentham, M. Agnew & S. Eriksen, 2004. New indicators of vulnerability and adaptive capacity, vol 122. Tyndall Centre for Climate Change Research Norwich.
Adger, W. N., W NeilDavies, Evan GR & S. P. Simonovic, 2011. Global water resources modeling with an integrated model of the social–economic–environmental system. Advances in water resources 34(6):684-700.
Alapati, S. & Z. Kabala, 2000. Recovering the release history of a groundwater contaminant using a non-linear least-squares method. Hydrological processes 14(6):1003-1016.
Anderson, M. & W. Woessner, 1992. Applied groundwater modeling. 381 p. Academic, San Diego, Calif.
Baalousha, H. M., 2012. Modelling surface–ground water interaction in the Ruataniwha basin, Hawke’s Bay, New Zealand. Environmental Earth Sciences 66(1):285-294.
Bedient, P. B., H. S. Rifai & C. J. Newell, 1994. Ground water contamination: transport and remediation.
Bianchi, W. & E. Haskell, 1966. Air in the vadose zone as it affects water movements beneath a recharge basin. Water Resour Res 2(2):315-322.
Brouyère, S., A. Dassargues & V. Hallet, 2004. Migration of contaminants through the unsaturated zone overlying the Hesbaye chalky aquifer in Belgium: a field investigation. J Contam Hydrol 72(1):135-164.
Dinh, Q., S. Balica, I. Popescu & A. Jonoski, 2012. Climate change impact on flood hazard, vulnerability and risk of the Long Xuyen Quadrangle in the Mekong Delta. International journal of river basin management 10(1):103-120.
Eckhardt, K. & U. Ulbrich, 2003. Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. Journal of Hydrology 284(1):244-252.
Ferris, J. G., 1952. Cyclic fluctuations of water level as a basis for determining aquifer transmissibility. US Geological Survey.
Fetter, C., 1994. Applied hydrogeology: Macmillan College Publishing Company. New York New York.
Field, C. B., 2012. Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change. Cambridge University Press.
Freeze, R. & J. Cherry, 1979. Groundwater Prentice Hall Englewood Cliffs. New Jersey 603.
Green, T. R., M. Taniguchi, H. Kooi, J. J. Gurdak, D. M. Allen, K. M. Hiscock, H. Treidel & A. Aureli, 2011. Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology 405(3):532-560.
Groisman, P. Y., T. R. Karl, D. R. Easterling, R. W. Knight, P. F. Jamason, K. J. Hennessy, R. Suppiah, C. M. Page, J. Wibig & K. Fortuniak, 1999. Changes in the probability of heavy precipitation: important indicators of climatic change. Climatic Change 42(1):243-283.
Hill, M. & C. Tiedeman, 2007. Effective calibration of groundwater models, with analysis of data, sensitivities, predictions, and uncertainty. John Wiely, New York:455.
Karl, T. R. & K. E. Trenberth, 2003. Modern global climate change. science 302(5651):1719-1723.
Kushwaha, P. K. & R. Kumar, 2009. Studies on wa ter absorption of bamboo-polyester composites: effect of silane treatment of mercerized bamboo. Polymer-Plastics Technology and Engineering 49(1):45-52.
Lu, P.-W., 2014. Spatial planning and urban resilience in the context of flood risk.: A comparative study of Kaohsiung, Tainan and Rotterdam. TU Delft.
McCulloch, A., 2003. Chloroform in the environment: occurrence, sources, sinks and effects. Chemosphere 50(10):1291-1308.
McCully, P., 2001. Silenced rivers: the politics and ecology of large dams. London: Zed Books.
McDonald, M., A. Harbaugh & A. M. T.-D. Finite-Difference, 1988. Ground-Water Flow Model, Techniques of Water Resources Investigations of the United States Geological Survey, Book 6. US Geological Survey, Washington, DC.
McPhee, J. & W. W.-G. Yeh, 2004. Multiobjective optimization for sustainable groundwater management in semiarid regions. Journal of water resources planning and management 130(6):490-497.
Meyboom, P., 1966. Unsteady groundwater flow near a willow ring in hummocky moraine. Journal of Hydrology 4:38-62.
Meyer, P. D. & E. D. Brill, 1988. A method for locating wells in a groundwater monitoring network under conditions of uncertainty. Water Resour Res 24(8):1277-1282.
Neupauer, R. M. & J. L. Wilson, 2001. Adjoint‐derived location and travel time probabilities for a multidimensional groundwater system. Water Resour Res 37(6):1657-1668.
Nowosielski, B. E. & J. Fein, 1998. Experimental study of octanol–water partition coefficients for2, 4, 6-trichlorophenol and pentachlorophenol: Derivation of an empirical model of chl orophenol partitioning behaviour. Appl Geochem 13(7):893-904.
Pinto, R. & F. C. Martins, 2013. The Portuguese national strategy for integrated coastal zone management as a spatial planning instrument to climate change adaptation in the Minho River Estuary (Portugal NW-Coastal Zone). Environmental science & policy 33:76-96.
Prommer, H., D. Barry, W. Chiang & C. Zheng, 2001. PHT3D-A MODFLOW-MT3DMS-based reactive multicomponent transport model. MODFLOW 2001 and other modeling odysseys:477-483.
Schwartz, F. W. & H. Zhang, 2003. Fundamentals of ground water. Wiley.
Scibek, J. & D. Allen, 2006. Modeled impacts of predicted climate change on recharge and groundwater levels. Water Resour Res 42(11).
Segol, G., 1994. Classic groundwater simulations: proving and improving numerical models. Prentice Hall.
Singh, R. M., B. Datta & A. Jain, 2004. Identification of unknown groundwater pollution sources using artificial neural networks. Journal of water resources planning and management 130(6):506-514.
Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor & H. Miller, 2007. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, 2007. Cambridge University Press, Cambridge.
Sterr, H., R. Klein & S. Reese, 2000. Climate change and coastal zones: An overview of the state of the art on regional and local vulnerability assessment. Citeseer.
Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. M. Midgley, 2014. Climate change 2013: The physical science basis. Cambridge University Press Cambridge, UK, and New York.
Tseng, Y.-H., L. C. Breaker & E. T.-Y. Chang, 2010. Sea level variations in the regional seas around Taiwan. Journal of oceanography 66(1):27-39.
Van der Kamp, G., Tidal fluctuations in a confined aquifer extending under the sea. In: International Geological Congress, 1972. vol 24. p 101-106.
Vis, M., F. Klijn, K. De Bruijn & M. Van Buuren, 2003. Resilience strategies for flood risk management in the Netherlands. International journal of river basin management 1(1):33-40.
Wagner, B. J., 1992. Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modelling. Journal of Hydrology 135(1):275-303.
Wilby, R. L. & I. Harris, 2006. A framewor k for assessing uncertainties in climate change impacts: Low‐flow scenarios for the River Thames, UK. Water Resour Res 42(2).
Woodbury, A. D. & T. J. Ulrych, 1998. Reply [to “Comment on ‘Minimum relative entropy inversion: Theory and application to recovering the release history of a groundwater contaminant’by Allan D. Woodbury and Tadeusz J. Ulrych”]. Water Resour Res 34(8):2081-2084.
Zheng, C. & G. D. Bennett, 2002. Applied contaminant transport modeling, vol 2. Wiley-Interscience New York.
工業技術研究院,2005, 「台南市中石化安順廠整治場址土壤及地下水汙染範圍調查及整治工作建議計畫-第二次工作報告書」,行政院環保署。
中興工程顧問社,1992,「雲林臨海式基礎工業區開發計畫抽砂造地規劃造地區域地質鑽探報告(1)海上鑽探」,經濟部工業局。
王智緯,2012,「好氧降解對地下水中BTEX汙染團之影響」,國立交通大學土木工程研究所碩士論文。
台塑六輕營建部,2010,「六輕基地五期環評報告」,台塑公司。
史盟秀、李芳胤、郭文健、邱瑞宇,2002,「BTEX在幾種台灣土壤中之吸附與降解作用」,土壤與環境,第5卷,第4期。
交通部運輸研究所,2006,「臺灣西南沿海地區軟弱地質交通結構物設計處理對策研究」,交通部運輸研究所。
汪成民、車用太、萬迪、董守玉,1988,「地下水微動研究的應用」,地震出版社。
李志萍、陳肖剛、郝仕龍、沈照理,2007「汙染河流中苯系物對淺層地下水影響的是內模擬試驗」,地球科學與環境學報,第29卷,第1期。
李振誥、許清荃、林俶寬,2000,「濁水溪沖積扇多層地下水調配與管理之研究」,臺灣水利,第48卷,第4期,頁41-52。
余貴坤,1986,「降雨量與深井水位變動的關係研究」,台灣地區地球物理研討會,頁165-174。
吳育生、余進利、李振誥,2005,「以感潮地下水水位推估橘線含水層海側等效邊界」,台灣水利,第53卷,第3期,頁17-24。
吳欣蓉,2004,「土壤及地下水汙染整治技術手冊:評估調查及監測」,經濟部工業局。
吳偉競,2007,「蘭陽平原整合模式下之MODFLOW地下水模擬研究」,國立中正大學地震研究所暨應用地球物理研究所碩士論文。
林宏奕、王士榮、葉信富、徐國錦、李振誥、黃智昭、張閔翔,2014,「台灣中段山區地下水資源開發潛能與可開發潛能量評估」,西太平洋地質科學地下水專刊。
林和駿 洪致文,2013,「以臺灣分區雨量指數分析百年來降雨變化」,102 年天氣分析與預報研討會。
徐年盛、張德鑫、吳呈懋、劉宏仁、劉建宏,2005,「地下水擴散汙染模式建立之研究」,行政院環境保護署環境檢驗所。
財團法人成大研究發展基金會,2015,「氣候變遷下臺灣九大地下水資源區地下水潛能變化之研究」,經濟部水利署水利規劃試驗所。
國家災害防救科技中心,2011,「臺灣氣候變遷科學報告」,行政院國家科學委員會。國家災害科技防救中心,2011, 「臺灣氣候變遷推估與資訊平台建置(I)」,科技部。
國家災害科技防救中心,2011,「臺灣氣候變遷推估與資訊平台建置(I)」,科技部。
張良正、陳文福、張並瑜,2009,「臺灣地區地下水區水文地質調查及地下水資源評估-地下水補注潛勢評估與地下水模式建置(1/4)」,交通大學。
張誠信,2002,「濁水溪沖積扇含水層之氮化合物汙染潛勢評估」,台灣大學生物環境系統工程學系暨研究所博士論文。
陳玉玲,2011,「氣候變遷下台南市海岸災害風險地圖分析」,康寧大學休閒資源暨綠色產業研究所。
陳世榮,1997,「探究環境治理中的知識溝通:台灣氣候變遷研究的網路分析」,公共行政學報,第25期,頁1-30。
陳亞寧、崔旺誠、李衛紅 ,2003,「塔里木河的水資源利用與生態保護」,地理學報。
陳忠偉,2001,「濁水溪沖積扇合適水位與海水入侵之研究」,國立成功大學資源工程學系碩士論文。
陳俶季,2002,「環境大地工程學」,茂昌圖書有限公司。
許泰文,2003,「近岸水動力學」,中國土木水利學會出版,科技圖書公司。
許泰文,1997,「河川與海岸穩定對策之研究」, 國立成功大學水利及海洋工程研究所。
許泰文、錢樺,2013,「氣候變遷對台灣海岸環境可能之衝擊」,第35屆海洋工程研討會論文集。
湯京平與黃建勳,2006,「取用者自治與水資源管理:比較我國嘉南地區與美國加州雷蒙集水區之地下水治理」, 政治學報第,四十期,政治大學。
黃鎮臺,1999,「雲林地區地層下陷的特性與防護技術探討」,淡江大學水資源管理與政策研究中心。
黃煌煇、蔡瓊林,1984, 「海堤設計天文潮位頻率分析及平均海水面變化研究」, 國立成功大學台南水工試驗所,研究試驗報告,第六十九號。
董天行,2006,「地下水位調查重點」,台灣土壤及地下水環境保護協會簡訊,第20期,頁14-25。
楊庭雅,2011,「關渡平原地下水流動模擬」,中央大學應用地質研究所碩士論文。
經濟部水利署水利規劃試驗所,2013,「台灣地區各水資源分區因應氣候變遷水資源管理調適能力綜合研究」,經濟部水利署。
游保杉,2000,「高屏溪流域區域日降雨-逕流模式之研究(III)-氣候變遷對高屏溪流域水資源衝擊之探討」,行政院國家科學委員會。
劉振宇及賴成銑,1993,「濱海地區抽水試驗現場分析法」,中國農業工程學報,第39卷,第1期,頁94-100。
蔣業萍、陳余道、朱義年、藍俊康,2009,「地下水中乙醇汽油溶解組分傳移與生物降解的研究」,水利學報,第40卷,第7期。
歐善惠、許泰文、張憲國、郭一羽、李兆芳,1999,「海岸災害防救暨永續利用整體規劃(I)」,經濟部水利署。
歐善惠、許泰文、張憲國,2001,「永續的鑽石海岸-台灣海岸災害防救與永續利用規劃」,經濟部水利署水資源局。
http://water.sinotech-eng.com/dispPageBox/CCS/CCSCP.aspx?ddsPageID=CCASCH1_4&
http://ngis.moea.gov.tw/moeaweb/Main.aspx
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw