進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2808201410592200
論文名稱(中文) 二氧化碳–水–砂/粉砂岩系統之反應實驗
論文名稱(英文) Experiments of reactions in the CO2–water–sandstone/siltstone system
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 102
學期 2
出版年 103
研究生(中文) 蔡易宗
研究生(英文) Yi-Tsung Tsai
學號 L46014039
學位類別 碩士
語文別 中文
論文頁數 136頁
口試委員 指導教授-楊懷仁
口試委員-蕭炎宏
口試委員-何恭算
中文關鍵字 砂岩  粉砂岩  二氧化碳−水−岩反應  二氧化碳地質封存  超臨界二氧化碳 
英文關鍵字 sandstone  siltstone  CO2–water–rock interaction  CO2 geological sequestration  supercritical CO2 
學科別分類
中文摘要 地質封存二氧化碳為降低大氣中過量二氧化碳之主要方法,但對圍岩的穩定性添增變數。具頁岩蓋層之砂岩段為一可考量之儲集層。本研究模擬二氧化碳注入於地下一公里處,選以臺灣西北部魚藤坪砂岩段之砂岩及錦水頁岩層之粉砂岩分別與水及二氧化碳於42℃–200 kg/cm2及55℃–155 kg/cm2下反應3、7、14天,藉由量測反應後水溶液元素濃度變化,並以水–岩反應(42、60、70℃,1.03 kg/cm2,3、7、14天;55℃,1.03 kg/cm2,3、7、14、19、28、35、42、48天)作為參考組,探討二氧化碳注入對圍岩之化學效應。此外,55℃–150 kg/cm2之實驗用以比較壓力對二氧化碳封存系統之影響。
兩種岩石碎屑粒徑介於0.02–0.40 mm,組成礦物為石英、鈉長石、微斜長石、白雲母、綠泥石、方解石及少量草莓狀黃鐵礦。砂岩細粒基質佔總體積的~20%,粉砂岩為~80%且多孔隙。全岩成分分析顯示粉砂岩CaO含量為砂岩之~2倍,兩者SiO2含量為72−75%,Al2O3含量為~10%,其餘主要氧化物含量<3%。
砂/粉砂岩−水−(二氧化碳)反應後,水Fe、Mn、Al及Ba濃度皆低於偵測極限,反映此等元素在水岩反應中不易釋入水中,或是含此等元素之次生礦物反應初期即沉澱。兩種岩石與水反應後,水Ca、Mg、K、Na濃度分別為18.1−55.1、4.53−12.5、3.17−6.55及1.12−4.22 ppm,反映方解石溶解及綠泥石、白雲母與鈉雲母的蝕變。此等礦物之反應商數(Q)相符於平衡常數(K),顯示系統已趨於平衡。此外,系統中之水Si濃度為1.29−4.70 ppm,主要由綠泥石貢獻,當反應溫度高於55℃後,少量之鈉長石的蝕變亦會釋出Na及Si入水中(<5%)。水Na、Si濃度隨溫度上升而增加,顯示鈉雲母及鈉長石於高溫時反應速率較高,Mg濃度則溫度上升而下降,與綠泥石平衡常數與溫度呈負相關的特性一致。反應後水Ca、Sr、K濃度變化與溫度相關性不明顯,顯示方解石與白雲母的特性。二氧化碳注入水−岩系統後,因水溶液酸化,提高水溶液對礦物的溶解度,使水溶液中元素濃度顯著上升。水Ca、Sr濃度上升幅度最大,皆可達~26倍,主要顯示方解石溶解,其次是Mg,顯示綠泥石的蝕變作用,水Na、K濃度增加主要由鈉雲母及白雲母反應釋出。而在二氧化碳注入後,亦可能形成碳酸鹽礦物、非晶質二氧化矽及次生白雲母沉澱。
整體而言,元素溶出速率隨時間增長而漸降低,顯示在二氧化碳注入封存系統初期,水對礦物溶解度較高,於封閉系統中,水溶液中元素漸達飽和,安全性較開放系統高。砂岩元素總溶出量為<0.37%,粉砂岩則稍高,可達~0.6%,其差異可能反映黏土或碳酸鹽礦物之含量變化。Ca溶出量最大,佔岩石中Ca總量之10−42%,其次是Sr,為5−25%,兩元素之溶出主要源自方解石。砂岩及粉砂岩之Mg溶出量皆佔自身Mg總量約7%,主要源自綠泥石。其他成分(Na、K及Si)之溶出量<0.5%,顯示方解石與綠泥石於二氧化碳地質封存系統之含量攸關該系統之穩定性,故在二氧化碳封存計畫中,選擇適合封存場址時需確切瞭解儲集層及蓋層中之方解石及綠泥石含量,以確保整體封存系統之安全性。
英文摘要 SUMMARY
Experiments of rock–water interactions were carried out at 42–70˚C, CO2 fugacity of 0.0003 and 1, with pressure ranging from 1.03 to 200 kg/cm2 to investigate the chemical consequences from CO2 geological sequestration and the relative roles of the associated mineral dissolution reactions. The results show that compositions of water after interacting with sandstone/siltstone were dominated by calcite, chlorite, muscovite, and paragonite dissolutions. The amounts of calcite and chlorite dissolutions increased by factors of ~26 and ~10, respectively, as the CO2 fugacity increasing from 0.0003 to 1; therefore, are critical to the feasibility of the projected CO2 geological sequestration plan in northwestern Taiwan.
Key words: sandstone, siltstone, CO2–water–rock interaction, CO2 geological sequestration, supercritical CO2
INTRODUCTION
Rock–water–CO2 interaction has recently emerged as one of the major research topics to address issues related to CO2 geological sequestration. However, most documents described the effects of addition of CO2 on water compositions without detailed discussion on the relationships between chemical consequences and mineral dissolution reactions. In this study, water–sandstone/siltstone reaction experiments were carried out at CO2 fugacity of 0.0003 and 1. The bulk chemical reaction in the system was constructed from the water compositions and comparisons between reaction quotients (Q) and equilibrium constants (K). The results were applied to the mineral dissolution reactions when the CO2 fugacity increasing to 1 to simulate the chemical consequences of sequestrating CO2 in the sandstone from the Yutengping Formation and the siltstone from the Chinshui Formation.
MATERIALS AND METHODS
In the rock–water interaction experiments, pure water and a sandstone sample from the Yutenping Formation or a siltstone sample from the Chinshui Formation were used as starting reactants. The experiments at CO2 fugacity of 0.0003 were performed in a capped teflon beaker at 42, 55, 60, and 70˚C with pressure fixed at 1.03 kg/cm2 lasting for 3–48 days. Reaction experiments simulating the CO2 geological sequestration environment were carried out in a sealed and cardice-filled stainless cell, which was then heated to T–P conditions of 42˚C–200 kg/cm2, 55˚C–200 kg/cm2, and 55˚C–155 kg/cm2 for 3, 7, and 14 days. All experiments subjected 1 gram of rock grains (1.0–1.4 mm) to 10 ml of water. The rock samples were analyzed for major oxide compositions using XRF and Sr abundance using ICP-MS. The water compositions after reactions were analyzed with ICP-OES. Also, the pH values of the water samples were determined within 30 minutes after the termination of the reactions.
RESULTS AND DISCUSSION
After interacting with sandstone/siltstone for 3–48 days at 42–70˚C, the water samples contain 18.1–55.1 ppm Ca, 4.53–12.5 ppm Mg, 3.17–6.55 ppm K, and 1.12–4.22 ppm Na, reflecting congruent dissolution of calcite and incongruent dissolutions of chlorite, muscovite, and paragonite, respectively. These minerals and water attained quasi-equilibrium states as indicated by the matches between the reaction quotients (Q) and equilibrium constants (K). The water also has 1.29–4.70 ppm Si, which was mainly derived from chlorite. Elevating temperature to ≥ 55˚C, albite dissolution also contributed to Na and Si abundances in water, however, with significantly lower extents (<5%). The plots of reaction time versus element abundances in water show attainment of equilibrium for all major cations at 42˚C after 7 days of rock–water interaction. In general, the equilibrium states persisted in the 55˚C, 60˚C, and 70˚C experiments, except the increases in Na and Si concentrations with increasing reaction duration. This feature is consistent with progressive albite dissolution at temperatures ≥ 55˚C. Longer reaction duration up to 48 days at 55˚C revealed more complicated dissolution–precipitation reactions. Abrupt increases in Ca, Sr, and Mg abundances in water requires breakdown of phase(s) in addition to calcite. Dolomite dissolution is thus inferred. Mg is the only element confirmed to precipitate from water after 36 days at 55˚C.
At T–P conditions of 42˚C–200 kg/cm2, 55˚C–200 kg/cm2, and 55˚C–155 kg/cm2, increasing the CO2 fugacity from 0.0003 to 1 resulted in ~26, 7–12, 1–3, 2–3 and 3–7 fold increases in Ca, Mg, K, Na, and Si concentrations in water, indicating enhancing calcite, chlorite, muscovite, and paragonite dissolutions. In contrast to the general attainment of steady states in the experiments at CO2 fugacity of 0.0003, most major cation concentrations of the water from the experiments at CO2 fugacity of 1 varied systematically with the reaction duration. As the reaction duration increased from 3 to 14 days, the water compositions were characterized by increasing Mg and Na concentrations and decreasing Si and K abundances, indicating chlorite and paragonite dissolution accompanied by amorphous SiO2 and muscovite precipitation. The precipitation of amorphous SiO2 is consistent with decreasing SiO2 solubility with decreasing the pH values, which were complex functions of reactions of phases in the system. Compared to those reacted with sandstone, the CO2-saturated water samples after reacting with siltstone are characterized by relatively higher pH values, resulting in Ca precipitation to form CaCO3. In contrast to the pH control on the water compositions, increasing reaction temperature from 42 to 55˚C and pressure from 155 to 200 kg/cm2 did not exert significant variations in water compositions. Therefore, it is inferred that the variation in the pH values of the water in the experimental system was dominated by phase reactions instead of varying CO2 solubility in the experimental P–T conditions. However, it is emphasized that increasing CO2 fugacity to 1 for the water–rock interactions significantly decreased the water pH values from ~8 to ~6.5, and was the major factor affecting mineral solubility in the water.
CONCLUSION
(1) In the water–sandstone/siltstone system at the atmospheric CO2 fugacity, the compositions of water are dominated by dissolutions of calcite, chlorite, muscovite, and paragonite. The bulk chemical reaction equation can be deduced from the proportions of cations in water. The consistency in the reaction equilibrium constants and reaction quotients indicates attainment of a steady-state.
(2) Increasing the CO2 fugacity of the water–sandstone/siltstone system from 0.0003 to 1 increased the Ca, Mg, Si, K, and Na abundances in water by factors of ~26, 7–12, 3–7, 1–3, and 2–3, respectively, requiring enhancing calcite, chlorite, muscovite, and paragonite dissolution. However, the systematic variations between cation concentrations in water and reaction duration signified SiO2 and muscovite precipitations and incomplete reactions between water and rocks.
(3) Dominated by CO2 fugacity and responded to mineral reactions, the pH values of water controlled the water compositions.
(4) In the water–sandstone/siltstone system, the water compositions at a CO2 fugacity of 1 do not vary significantly as temperature increasing from 42 to 55˚C and pressure increasing from 155 to 200 kg/cm2.
(5) Sequestrating CO2 in the sandstone from the Yutengping Formation and the siltstone from the Chinshui Formation dissolved > 35% of the constituent calcite (~2 and ~5%, respectively, in bulk samples). Dissolution of 3% of the constituent chlorite was the second abundant component contributing to water compositions. These experimental results provide critical constraints for evaluating the feasibility of injecting CO2 into the Yutengping and Chinshui Formations.
論文目次 摘要 I
Abstract III
致謝 VI
目錄 VII
表目錄 X
圖目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 二氧化碳地質封存 4
1.3 二氧化碳地質封存與砂岩之關聯性 8
1.4 文獻分析 12
1.5 研究目的 16
第二章 研究方法 17
2.1 研究流程與代號說明 17
2.1.1 研究流程 17
2.1.2 代號說明 18
2.2 實驗材料與反應條件 19
2.2.1 實驗材料與製備 19
2.2.2 實驗反應參數 20
2.3 實驗設備 22
2.3.1 封閉式反應容器(cardice pressurized reaction cell,CPRC) 22
2.3.2 實驗參考組(reference group,RG) 24
2.4 酸溶處理與消化步驟 24
2.5 分析方法 25
2.5.1 偏光顯微鏡觀察 25
2.5.2 全岩粉末繞射分析 25
2.5.3 掃描式電子顯微鏡附加能量散射光譜儀之觀察與成分分析 25
2.5.4 全岩粉末螢光分析 26
2.5.5 感應耦合電漿質譜儀分析全岩鍶含量 27
2.5.6 感應耦合電漿光學放射光譜儀分析水樣元素濃度 27
第三章 實驗分析結果 28
3.1 反應岩石礦物相、組構及成分分析 28
3.1.1 魚藤坪砂岩段之砂岩及錦水頁岩層之粉砂岩於反應前之岩象及化學成分 28
3.1.2 魚藤坪砂岩段之砂岩及錦水頁岩層之粉砂岩於反應後之XRD分析結果 30
3.2 水–岩反應後水成分之變化 39
3.2.1 影響反應後水成分變化之因素及水樣濃度修正 39
3.2.2 反應後水成分變化與反應岩石之關係 41
3.2.3 反應後水成分變化與時間之關係 42
3.2.4 反應後水成分變化與溫度之關係 43
3.2.5 影響反應後水成分變化之主要因子 43
3.3 二氧化碳–水–岩石反應後水成分之變化 60
3.3.1反應後水樣元素濃度修正 60
3.3.2 反應後水成分變化與反應岩石之關係 62
3.3.3 反應後水成分變化與反應時間之關係 63
3.4 水−岩反應及水−岩−二氧化碳反應後水樣pH值之變化 71
第四章 討論 77
4.1 水–岩反應系統中可能進行之化學反應式 77
4.1.1 反應平衡常數計算 77
4.1.2 水溶液中K、Na、Mg、Ca、Si之來源及反應系統內可能參與反應之礦物相 78
4.1.3 反應系統中可能生成之次生礦物 81
4.2 二氧化碳注入對水–岩系統之影響 93
4.2.1 二氧化碳對水樣pH值之影響 93
4.2.2 二氧化碳對岩石中主要元素溶出量之影響 95
4.2.3 砂岩及粉砂岩於(碳酸)水中之碳酸鈣溶解度差異 97
4.2.4 砂岩及粉砂岩於(碳酸)水中Sr溶出量之差異及來源 98
4.3 溫度及壓力對岩石中主要元素溶出量之影響 107
4.4 二氧化碳−水−砂(頁)岩系統組成物質成分對化學反應結果之影響 111
4.5 二氧化碳封存系統中,礦物溶解與沉澱對封存成效之影響 122
第五章 結論 129
參考文獻 131
中文文獻 131
英文文獻 131
參考文獻 中文文獻
台灣電力公司,二氧化碳地質封存試驗場址調查規劃與研究期末報告。台灣電力公司出版,台灣,第3頁,2011年。
何春蓀,臺灣地質概論:臺灣地質圖說明書(二版四刷),經濟部中央地質調查所出版,台灣,第96−99頁,2003年。
呂明達、宣大衡、黃雲津、范振輝,台灣陸上二氧化碳地質封存潛能推估。鑛冶 52/3,第154−161頁,2008年。
張堯婷,超臨界二氧化碳−水−長石系統之礦物及化學反應。國立成功大學地球科學系碩士論文,台灣,共96頁,2011年。
曼恩,全球暖化假性暫停。科學人第148期,第40−43頁,2014年。
焦中輝、林俊余、余旗文、盧佳遇,台西盆地南段晚中新世至更新世沉積地層作為探地質封存層之探討研究。鑛冶 55/1,第109−128頁,2011年。
賴郡曄,數值模擬二氧化碳−水−長石系統之化學及礦物反應變化。國立成功大學地球科學系碩士論文,台灣,共147頁,2012年。
龍慧容,二氧化碳−水−砂岩系統之反應實驗。國立成功大學地球科學系碩士論文,台灣,共115頁,2012年。

英文文獻
Adams, E. E., Caldeira, K., Ocean storage of CO2. Elements 4 (5), 319−324, 2008.
Bachu, S., Gunter, W. D., Perkins, E. H., Aquifer disposal of CO2−hydrodynamic and mineral trapping. Energy Conversion and Management 35 (4), 269−279, 1994.
Bayon, G., Pierre, C., Etoubleau, J., Voisset, M., Cauquil, E., Marsset, T., Sultan, N., Drezen, E. L., Fouquet, Y., Sr/Ca and Mg/Ca ratios in Niger Delta sediments: Implications for authigenic carbonate genesis in cold seep environments. Marine Geology 241 (1–4), 93–109, 2007.
Benson, S. M., Cole, D. R., CO2 sequestration in deep sedimentary formations. Elements 4 (5), 325−331, 2008.
Berg, A., Banwart, S. A., Carbon dioxide mediated dissolution of Ca−feldspar: implications for silicate weathering. Chemical Geology 163 (1−4), 25−42, 2000.
Broecker, W. S., Thermohaline circulation, the achilles heel of our climate system: Will man-made CO2 upset the current balance?. Science 278 (5343), 1582−1588,, 1997.
Burant, R. G., Jr., Celia, M. A., Guswa, A. J., Peters, C. A., Safe storage of CO2 in deep saline aquifers. Environmental Science & Technology 36 (11), 240−245, 2002.
Carroll, S. A., Knauss, K. G., Dependence of labradorite dissolution kinetics on CO2(aq), Al(aq), and temperature. Chemical Geology 217 (3−4), 213−225, 2005.
CO2CRC, Storage capacty estimation, site selection and characterisation for CO2 storage projects. Cooperative Reasearch Centre for Greenhouse Gas Technologies, Australian, 2008.
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., Totterdell, I. J., Acceleration of global warming due to carbon−cycle feedbacks in a coupled climate model. Nature 408, 184−187, 2000.
Crowley, T. J., Causes of climate Change over the past 1000 years. Science 289 (5477), 270−277, 2000.
Duan, Z., Sun, R., An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chemical Geology 193 (3−4), 257–271, 2003.
El Bouseily, A. M., El Sokkary, A. A., The relation between Rb, Ba and Sr in granitic rocks. Chemical Geology 16 (3), 207–219, 1975.
Faure, G., Principles and applications of geochemistry (2nd edition). Prentice Hall, USA, 110–199, 1998.
Gale, J., Geological storage of CO2: What do we know, where are the gaps and what more needs to be done?. Energy 29 (9−10), 1329−1338, 2004.
Gaus, I., M. Azaroual, M., Czernichowski-Lauriol, I., Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chemical Geology 217 (3−4), 319−337,, 2005.
Gerdemann, O., Mackay, E., Todd, A., Comparison of numerical codes for geochemical modelling of CO2 storage in target sandstone reservoirs. Chemical Engineering Research and Design 89 (9A), 1805−1816, 2011.
Gorrell, H. A., Classification of formation waters based on sodium chloride content. American Association of Petroleum Geologists Bulletin 42 (10), 2513, 1953.
Groisman, P. Y., Knight, R. W., Easterling, D. R., Karl, T. R., Hegerl, G. C., Razuvaev, V. N., Trends in intense precipitation in the climate record. Journal of Climate 18 (9), 1326−1350, 2005.
Gunter, W. D., Perkins, E. H., Aquifer disposal of CO2−rich gases−reaction design for added capacity. Energy Conversion and Management 34 (9−11), 941−948, 1993.
Gysi, A. P., Atefansson, A., Experiments and geochemical modeling of CO2 sequestration during hydrothermal basal alteration. Chemical Geology 306−307, 10−28, 2012.
Herzog, H. J., Drake, E., Tester, J., Rosenthal, R., A research needs assessment for the capture, utilization, and disposal of carbon dioxide from fossil fuel−fired power plants. U.S. Department of Energy, Office of Energy Research, Office of Program Analysis and Office of Fossil Energy, Office of Coal Technology, USA, 1993.
Huang, Y., Fairchild, I., Partitioning of Sr2+ and Mg2+ into calcite under karst–analogue experimental conditions. Geochimica et Cosmochimica 65 (1), 47–62, 2001.
Huq, F., Blum, P., Marks, M. A. W., Nowak, M., Haderlein, S., Grathwohl, P., Chemical changes in fluid composition due to CO2 injection in the Altmark gas field: preliminary results from batch experiments. Environ Earth Sciences 67 (2), 385−394, 2012.
Intergovernmental Panel on Climate Change (IPCC), Carbon dioxide capture and storage. Cambridge University Press, Cambridge, New York, NY, USA, 2005.
Intergovernmental Panel on Climate Change (IPCC), Climate change 2013: the physical science basis. Cambridge University Press, Cambridge, New York, NY, USA, 2013.
International Energy Agency (IEA), Energy Technology Perspectives 2012: pathways to clean energy system. Organization for Enconomic Co-operation and Development (OEDC), 2012.
Johansson, T. B., Williams, R .H., Ishitani, H., Edmonds, J. A., Options for reducing CO2 emissions from the energy supply sector. Energy Policy 24 (10–11), 985–1003, 1996.
Kaszuba, J. P., Janecky, D. R., Snow, M. G., Experimental evaluation of mixed fluid reactions between supercritical carbon dioxide and NaCl brine: Relevance to the integrity of a geologic carbon repository. Chemical Geology 217 (3−4), 277−293, 2005.
Ketzer, J. M., Iglesias R., Einloft, S., Dullius, J., Ligabue, R., Lima, V. de, Water−rock−CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil. Applied Geochemistry 24 (5), 760−767, 2009.
Kharaka, Y. K., Cole, D. R., Hovorka, S. D., Gunter, W. D., Knauss, K. G., Freifeld, B. M., Gas−water−rock interactions in Frio Formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins. Geology 34 (7), 577−580, 2006.
Klara, S. M., Srivastava, R. D., Mcilveried, H. G., Integrated collaborative technology development program for CO2 sequestration in geologic formations−United States Department of Energy R&D. Energy Conversion and Management 44 (17), 2699−2712, 2003.
Lagneau, V., Pipart, A., Catalette, H., Reactive transport modelling of CO2 sequestration in deep saline aquifers. Oil & Gas Science and Technology−Revue D IFP 60 (2), 231−247, 2005.
Lal, R., Carbon sequestration. Philosophical Transactions of the Royal Society B−Biological Sciences 363 (1492), 815−830, 2008.
Lu, P., Fu, Q., Seyfried Jr, W. E., Hereford, A., Zhu, C., Navajo Sandstone−brine−CO2 interaction: implications for geological carbon sequestration. Environmental Earth Sciences 62 (1), 101−118, 2011.
Luquot, L., Andreani, M., Gouze, P. Camps, P., CO2 percolation experiment through chlorite/zeolite-rich sandstone (Pretty Hill Formation−Otway Basin−Australia). Chemical Geology 294−295, 75−88, 2012.
Manabe, S., Stouffer, R. J., Multiple−century response of a coupled ocean−atmosphere model to an increase of atmospheric carbon−dioxide. Journal of Climate 7 (1), 5−23, 1994.
Michael, K., A. Shulakova, G. V., Ennis-King, J., Allinson, G., Sharma, S., Aiken, T., Geological storage of CO2 in saline aquifers−A review of the experience from existing storage operations. International Journal of Greenhouse Gas Control 4 (4), 659−667, 2010.
Morse, J. W., Bender, M. L., Partition coefficients in calcite: Examination of factors influencing the validity of experimental results and their application to nature systems. Chemical Geology 82, 265–277, 1990.
Oelkers, E.H., Cole, D. R., Carbon Dioxide Sequestration: A Solution to a Global Problem. Elements 4 (5), 305−310, 2008.
Ohsumi, T., CO2 storage options in deep−sea. Marine Technology Society Journal 29 (3), 58−66, 1995.
Oldenburg, C., Migration mechanisms and potential impacts of CO2 leakage and seepage. In: Wilson EJ, Gerard D (eds) Carbon Capture and Sequestration: Integrating Technology. Monitoring, Regulation, Blackwell Publishing, 127−146, 2007.
Park, A. H., Fan, L. S., CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process. Chemical Engineering Science 59 (22−23), 5241−5247, 2004.
Reid, R. C., Prausnitz, J. M., Poling, B. E., The Properties of Gases and Liquids (4th edition). McGraw-Hill book co., New York, 1987.
Rignot, E. J., Fast recession of a West Antarctic glacier. Science 281 (5376), 549−551, 1998.
Rosenbauer, R. J., Koksalan, T., Palandri J. L., Experimental investigation of CO2–brine–rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers. Fuel Processing Technology 86, 1581–1597, 2005.
Sorai, M., Ohsumi, T., Ishikawa, M., Tsukamoto, K., Feldspar dissolution rates measured using phase−shift interferometry: Implications to CO2 underground sequestration. Applied Geochemistry 22 (12), 2795−2809, 2007.
Tiab, D., Donaldson E. C., Petrophysics (3rd edition). Gulf Professional Publishing, USA, 2012.
Tsang, C. F., Benson, S. F., Kobelski, B., Smith, R. E., Scientific considerations related to regulation development for CO2 sequestration in brine formations. Environmental Geology 42 (2−3), 275−281, 2002.
Wang, T., Wang, H., Zhang, F., Xu, T., Simulation of CO2−rock−water interactions on geologic CO2 sequestration under geological conditions of China. Marine Pollution Bulletin 76 (1−2), 307−314, 2013.
Wiebe, R., Gaddy, V. L., The solubility of carbon dioxide in water at various temperature from 12 to 40o and at pressure to 500 atmospheres. Journal of the American Chemical Society 62 (4), 815–817, 1940.
Wiebe, R., The binary system carbon dioxide–water under pressure. Chemical Reviews 29 (3), 475–481, 1941.
Wigand, M., Carey, J. W., Schütt, H., Spangenberg, E., Erzinger, J., Geochemical effects of CO2 sequestration in sandstone under simulated in situ conditions of deep saline aquifers. Applied Geochemistry 23 (9), 2735−2745, 2008.
Worden, R. H., Barclay, S. A., Internally−sourced quartz cement due to externally−derived CO2 in sub−arkosic sandstones, North Sea. Journal of Geochemical Exploration 69−70, 645−649, 2000.
Yu, Z., Liu, L., Yang, S., Li, S., Yang, Y., An experimental study of CO2−brine−rock interaction at in situ pressure−temperature reservoir conditions. Chemical Geology 326−327, 88−101, 2012.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw