進階搜尋


 
系統識別號 U0026-2808201221542800
論文名稱(中文) 空載光達於內插方法與不同地形類別精度分析
論文名稱(英文) Accuracy analysis of Airborne LiDAR on different interpolation and terrain classification
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 100
學期 2
出版年 101
研究生(中文) 黃俊翔
研究生(英文) Chun-Hsiang Huang
學號 L46981105
學位類別 碩士
語文別 中文
論文頁數 151頁
口試委員 指導教授-林慶偉
口試委員-曾志民
口試委員-劉進金
中文關鍵字 空載光達  數值高程模型  VRS-RTK  精度評估  地形測量 
英文關鍵字 LiDAR  DEM  VRS-RTK  accuracy assesment  topography measurement 
學科別分類
中文摘要 空載光達掃描系統(LiDAR, Light Detection And Ranging)為國內近幾年來引進的測量技術。由空載光達產製之數值高程模型(Digital Elevation Model, DEM)具備高精度、高解析度及詳細地形特徵等特性,和傳統技術比較下具備相當優勢,使該技術在各種領域應用上相當廣泛,像是山崩體積計算。
本研究選定高雄市六龜區一帶作為研究區域,該區域衛星接收訊號良好且具備13種分類類別。在內插方面,採用ArcGIS 9.3及SCOP++軟體平台下對光達地面點雲進行1m 數值高程模型內插。並透過VRS-RTK結合國土測繪中心修正資料對不同類別區域進行測量,評估不同內插方法之DEM在不同類別誤差精度。
研究結果顯示,所有內插法均方根誤差(Root Mean Square Error, RMSE)及平均絕對誤差(Mean Absolute Error, MAE)誤差範圍分布在0.42~0.45公尺及0.30~0.32公尺之間。在測量區域中,檢核點數量有642個。大多數檢核點符合精度規範。在坡度分析中,誤差會隨著坡度上升而變大,其均方根誤差高達0.99公尺。地表植被覆蓋分析則說明植被覆蓋對誤差精度有一定程度影響。剖面分析顯示,裸露地-平地類別有垂直偏移現象,密林地-平地類別誤差精度則是受低矮植生影響造成。在內插方法評估方面,在崩塌發生區位採用的內插方法以階層式穩健過濾法、平面移動法精度較好,普通克利金法則比較差。
英文摘要 In recent years, Airborne LiDAR had applied in our country. Compared to the traditional measurement technologies, the digital elevation model (DEM) product made by Airborne LiDAR has superiorities for high-accuracy, high-resolution and detailed topographical features. And it had widely used in many fields.
This study choose the Liouguei district of Kaohsiung City as the research area. The communication of satellite is stable here, and it also contain thirteen classes in this area. About the Interpolation, the LiDAR ground point clouds has been interpolated to 1m DEM with ArcGIS 9.3 and SCOP++. And then measure different classes combining revised data from National Land Surveying and Mapping Center, using VRS-RTK assess the DEM error accuracy from different interpolations in different classes.
The results show that all of RMSE and MAE accuracy range are within 0.42~0.45m and 0.30~0.32m. There are 642 control points in the research area, and most of control points are in compliance with the specification of error limit. The slope analysis indicates that accuracy decreases with increasing slope, and RMSE raises up to 0.99 meter. The ground vegetation cover analysis explains that the vegetation cover can affect error accuracy in some condition. In the profile analysis, bare land - plains classes shows a vertical shift. In the woodland - plains classes, the accuracy error is affected by scrubby vegetation. About the interpolation assessment, the Hierarchic Robust Filtering and Moving Planes interpolation have better accuracy than Ordinary Kriging at the landslide location.
論文目次 摘要I
AbstractII
誌謝III
目錄IV
表目錄VIII
圖目錄XI
第一章 緒論1
1.1 前言1
1.2 研究動機及目的2
1.3 研究區域介紹4
1.3.1 地理位置4
1.3.2 交通概況5
1.3.3 地形分布6
1.3.4 空載光達資料區域7
第二章 前人研究8
2.1 空載光達之誤差來源8
2.2 數值高程模型之誤差來源12
2.3 內插方法分類應用15
2.4 山崩定義及發生區位18
第三章 研究方法21
3.1 研究流程及架構21
3.2 數值高程模型介紹22
3.3 空載光達介紹25
3.3.1 空載光達簡介 25
3.3.2 空載光達組成 26
3.3.3 空載光達訊號 30
3.3.4 空載光達雷射測距原理31
3.4 RTK基本介紹34
3.4.1 GPS衛星測量34
3.4.2 傳統RTK定位原理35
3.4.3 虛擬參考站RTK定位原理36
3.5 e-GPS介紹39
3.5.1 e-GPS系統組成39
3.5.2 虛擬基準站(VBS-RTK)40
3.5.3 VBS-RTK運作流程41
3.5.4 e-GPS 服務範圍42
3.5.5 VRS-RTK儀器規格組成44
3.6 內插方法原理47
3.6.1 距離反比權重法(Inverse distance weighting, IDW)47
3.6.2 自然鄰近法(Natural neighbor)48
3.6.3 最小曲率法(Spline)49
3.6.4 克利金法(Kriging)51
3.6.5 SCOP++內插軟體介紹53
3.7 數值高程模型精度評估61
3.7.1 數值高程模型產品等級61
3.7.2 地形類別定義 63
3.7.3 地表植被覆蓋類別定義63
3.7.4 高程精度分析64
3.8 數值高程模型評估65
第四章 研究成果66
4.1 誤差精度分析66
4.1.1 不同類別誤差精度分析72
4.1.2 盒型圖意義及類別分析86
4.1.3 坡度和誤差精度之關係100
4.1.4 地表植被覆蓋和誤差精度之關係101
4.1.5 不同內插法DEM之相對誤差比較102
4.2 點雲剖面分析104
4.2.1 裸露地-平地類別分析104
4.2.2 密林地-平地類別分析107
第五章 結果與討論111
5.1 誤差精度分析111
5.1.1 不同類別誤差精度分析111
5.1.2 坡度和誤差精度之關係113
5.1.3 地表植被覆蓋和誤差精度之關係114
5.1.4 不同內插法DEM之相對誤差比較114
5.2 點雲剖面分析115
第六章 結論117
參考文獻119
附錄128
參考文獻 中村浩之,2000,地震ズプペ崩壞發生,地震砂防,古今書院,第14-27頁。
內政部國土測繪中心,2005,LIDAR測製數值高程模型及數值地表模型標準作業程序(草案),台北,第9-11、26-27、29頁。
內政部國土測繪中心,2007,e-GPS定位系統應用於基本控制測量作業之研究,第5-34頁。
內政部國土測繪中心網站,http://www.egps.nlsc.gov.tw/index.html
王文能、尹承遠、陳志清、李木青,2000,九二一地震崩塌地現況與災害防治,九二一震災後中日土砂災害調查及治理研討會論文集。
王蜀嘉、曾義星,2003,高精度及高解析度數值地形模型測製規範工作報告,內政部委託計畫案。
史天元,2010,臺灣航空測量當前課題:民國一百年,航測及遙測學刊,第十五卷,第三期,第299-306頁。
史天元、彭淼祥、吳水吉、吳麗娟,2005,農委會空載光達台灣地區測試,航測及遙測學刊,第十卷,第一期,第103-128頁。
何春蓀,1989,普通地質學,五南圖書出版有限公司。
吳維昀,2008,空載光達航帶重疊區點雲資料之系統性高程偏差量偵測與分析,國立成功大學地球科學研究所碩士論文。
李志林、朱慶,2000,數字高程模型,武漢測繪科技大學出版社,武漢。
李德河、林宏明、吳建宏、鄭嘉盈,1998,瑞里地震公路邊坡之破壞調查,瑞里地震災害調查研討會,國立成功大學,台南,第111-135頁。
洪如江、林美聆、陳天健、王國隆,2000,921集集大地震相關的坡地災害、坡地破壞特性、與案例分析,地工技術,第81期,第17-32頁。
胡蘇澄、李麗玲,1998,臺灣中部七家灣溪集水區潛在崩塌危險地區之評定,臺灣林業科學,13(4),第271-277頁。
徐偉城,2007,LiDAR 與環境調查/監測/災害防救應用,國土資訊系統通訊,第61期,第69-79頁。
徐偉城、陳大科、劉進金、史天元、王成機、陳思仁,2005,以空載光達建立外傘頂洲數值高程模型,第二十四屆測量學術及應用研討會論文集。
張政亮,2004,地理資訊系統應用於蘭陽地區環境地質災害分佈之調查分析,蘭陽溪生命史-「宜蘭研究」第五屆學術研討會論文集,宜蘭文獻叢刊,第22期,第73-108頁。
張瑞津、沈淑敏、劉盈劭,2001,陳有蘭溪四個小流域崩塌與土石流發生頻率之研究,臺灣師大地理研究報告,第34期,第63-83頁。
陳大科、廖子毅、李惠容、陳浩志、莊敬業,2006,應用空載光達系統獲取棲蘭山林區數值地形模型與樹高模型,農委會94年度遙測應用計畫成果發表會專刊,第29-36頁。
陳良健,2005,數碼城市中建物模型之建置─多元遙測,工研院「空載光達科技應用論壇」演講資料。
陳信雄、何智武、蔡光榮,1988,烏山頭水庫集水區水土保持措施調查研究報告,中華水土保持學會,第1-191頁。
陳思仁、王成機,2007,內政部數值地形模型建置現況及加值應用,國土資訊系統通訊,第61期,第2 -14頁。
曾清涼、儲慶美,1999,GPS衛星測量原理與應用,國立成功大學衛星資訊研究中心,第二版,台南。
湯國安、劉學軍、閭國年,2005,數字高程模型及地學分析的原理與方法,科學出版社,中國。
童俊雄,2005,空載光達系統誤差分析與航帶平差方法之探討,國立成功大學測量及空間資訊學系碩士論文。
黃丁發,2009,GPS衛星導航定位技術與方法,科學出版社,北京。
黃台豐,1999,瑞里地震誘發之山崩,國立中興大學應用地質研究所碩士論文。
楊名,1997,GPS靜態及動態測量,GPS衛星定位測量實務(曾清涼、余致義、和慶雄、劉啟清、楊名編著),成功大學衛星資訊研究中心,台南。
楊善智,2007,數值高程模型(DEM)之品質評估,國立成功大學測量及空間資訊研究所碩士論文。
詹瑜璋,2006,大台北地區特殊地質災害調查與監測─高精度空載雷射掃描(LIDAR)地形測製與構造地形分析(2/3)期末報告,經濟部中央地質調查所委辦計劃,共143 頁。
廖軒吾,2000,集集地震誘發之山崩,國立中央大學地球物理研究所碩士論文。
劉囿維,2010,應用空載光達資料產製數值高程模型之品質評估,國立成功大學測量及空間資訊研究所碩士論文。
劉進金、林慶偉、曾志民、黃敏郎,2010,事件前後空載光達數值地形用於估計崩塌量之「空缺與缺陷」兩大問題之醒思,2010年亞洲地理資訊系統國際研討會暨台灣地理資訊學會年會、兩岸四地GIS與應用遙感研討會,高雄。
蕭國鑫、劉進金、游明芳、陳大科、徐偉城、王晉倫,2006,結合空載LiDAR與航測高程資料應用於地形變化偵測,航測及遙測學刊,第十一卷,第三期,第283 -295頁。
顔宏宇,2005,LiDAR直接量測數值地形資料精度分析與應用,國立成功大學地球科學研究所碩士論文。
Ackermann, F., 1999, Airborne Laser Scanning - Present Status and Future Expectations, ISPRS Journal of Photogrammetry & Remote Sensing, 54, pp. 64-67.
Aguilar, F.J., F., Aguera, M.A., Aguilar and C., Fernando, 2005, Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy, Photogrammetric Engineering & Remote Sensing, 71(7), pp.805-816.
Anderson, E.S., J.A., Thompson and R.E., Austin, 2005, LiDAR density and linear interpolator effects on elevation estimates, International Journal of Remote Sensing, 26(18), pp.3889-3900.
Baltsavias, E.P., 1999, Airborne Laser Scanning: Basic Relations and Formulas, ISPRS Journal of Photogrammetry & Remote Sensing, 54, pp.199-214.
Binh, T.Q. and Thuy, N.T., 2008, Assessment of the Influence of Interpolation Techniques on the Accuracy of Digital Elevation Model, Journal of Science, Earth Sciences, Vol.24, No.4, pp.176-183.
Brenner, C., 2006, Aerial Laser Scanning, International Summer School “Digital Recording and 3D Modeling”, Aghios Nikolaos, Crete, Greece.
Briese, C., Pfeifer, N. and Dorninger, P., 2000, Application of the robust interpolation for DTM determination. IAPRS, Vol. XXXIII, pp.55-61.
Christopher, W.B. and Nicholas, C.C., 2009, Evaluating error associated with lidar-derived DEM interpolation, Computers & Geosciences, 35(2), pp.289-300.
Doyle, F.J., 1978, Digital terrain models:An overview, Photogrammetric Engineering and Remote Sensing, Vol. 44(12), pp.1481-1485.
ESRI, 2009, Implementing Inverse Distance Weighting (IDW) in 3D Analyst, http://resources.esri.com/help/9.3/arcgisengine/java/gp_toolref/geoprocessing_with_3d_analyst/implementing_inverse_distance_weighting_idw_in_3d_analyst.htm
EuroSDR, 2004, Airborne Laserscanning and Interferometric SAR, Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, http://www.ipf.tuwien.ac.at/eurosdr/index.htm
F., Dai and C.F., Lee, 2002, Landslides on Natural Terrain, Mountain Research and Development, 22, 1, pp. 40-47.
Gong, J., Li, Z., Zhu, Q., Sui, H. and Zhou, Y., 2000, Effects of various factors on the accuracy of DEMs: an intensive experimental investigation, Photogrammetric Engineering and Remote Sensing, 66(9), pp.1113-1117.
Guo, Q., Li, W., Yu, H. and Alvarez, O., 2010, Effects of topographic variability and lidar sampling density on several DEM interpolation methods, Photogram. Eng. Remote Sensing, 76, pp.1-12.
Hodgson, M.E., J.R., Jensen, L., Schmidt, S., Schill and B., Davis, 2003, An evaluation of lidar- and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs, Remote Sensing of Environment, 84(2), pp.295-308.
Hodgson, M.E., Jensen, J., Raber, G., Tullis, J., Davis, B.A., Thompson, G. and Schuckman, K., 2005, An evaluation of lidar-derived elevation and terrain slope in leaf-off conditions, Photogrammetric Engineering & Remote Sensing, 71(7), pp.817-823.
Huising, E.J. and Pereira, L.M.G., 1998, Errors and Accuracy Estimates of Laser Data Acquired by Various Laser Scanning Systems for Topographic Application, ISPRS Journal of Photogrammetry & Remote Sensing, Vol.53, pp. 245-261.
Hutchinson, M.F., 1995, Interpolating mean rainfall using thin plate smoothing splines, International journal of geographical information systems, Vol.9, No.4, pp.385-403.
Kienzle, S., 2004, The effect of DEM raster resolution on first order, second order and compound terrain derivatives, Transactions in GIS, 8(1), pp.83–111.
Kraus, K. and Pfeifer, N., 1998, Determination of Terrain Models in Wooded Areas with Airborne Laser Scanner Data, ISPRS Journal of Photogrammetry & Remote Sensing, 53, pp.193-203.
Krige, D.G., 1951, A Statistical Approach to Some Mine Valuation and Allied Problems on the Witwatersrand, University of Witwatersrand, Johannesburg.
Kulmer, M.P., 1992, An Intensive Comparison of TINs and DEMs, Ph.D. dissertation, Department of Geography, University of California at Santa Barbara.
Landau, H., U., Vollath and X., Chen, 2002, Virtual Reference Station Systems, Journal of Global Positioning Systems, Vol.1, No.2, pp.137-143.
Langley, R.B., 1991, The Mathematics of GPS. GPS WORLD, July/August, 1991, pp.45-50.
Lee, J., 1991, Comparison of Existing Methods for Building Triangulated Irregular Network Models of Terrain from Grid Digital Elevation Model, International Journal of Geographical Information Systems, 5(3), pp.267-285.
Lemmens, M., 1997, Accurate Height Information from Airborne Laser Altimetry, Proc. IGARS, pp.222-243.
Li, J. and A.D., Heap, 2008, A Review of Spatial Interpolation Methods for Environmental Scientists, Geoscience Australia.
Li, Z., Q., Zhu and C. Gold, 2005, Digital Terrain Modeling Principles and Methodology, CRC Press, Boca Raton, London, New York, and Washington, D.C..
Liu, X., Z., Zhang, J., Peterson and S., Chandra, 2007, The effect of lidar data density on DEM accuracy, Proceedings of the International Congress on Modelling and Simulation (MODSIM07), Christchurch, New Zealand.
Longley, P.A., Goodchild, M.F., Maguire, D.J. and Rhind, D.W., 2001, Geographic Information Systems and Science, John Wiley & Sons.
MacEachren, A.M. and Davidson, J.V., 1987, Sampling and isometric mapping of continuous geographic surfaces, The American Cartographer, 14(4), pp.229-320.
Mark, D.M., 1984, Automated detection of drainage networks from digital elevation models, Cartographic, 21, pp.168-178.
Maune, D.F., 2001, Digital elevation model technologies and applications: The DEM users manual, The American Society for Photogrammetry and Remote Sensing, Bethesda, Maryland, U.S.A.
Miller, C.L. and R.A., LaFlamme, 1958, The digital terrain model-theory & application, Photogrammetric Engineering, 24, pp.433-442
Mitas, L. and H., Mitasova, 1988, General Variational Approach to the Interpolation Problem, Computer and Mathematics with Appllications, Vol.16, No.12, pp.983-992.
Peuker, T.K., R.J., Fowler, J.J., Little and D.M., Mark, 1978, The triangulated irregular network, Proceedings of the ASP Digital Terrain Models (DTM) Symposium, American Society of Photogrammetry, Falls Church, Virginia, pp.516-540.
Renslow, M., 2001, Development of a bare ground DEM and canopy layer in NW forestlands using high performance LIDAR, ESRI International User Conference.
Schenk, T., 2001, Modeling and Recovering Systematic Errors in Airborne Laser Scanners, OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Elevation Models, Stockholm, pp.40-48.
SCOP++ Software Manual V 5.4.5, 2010, TU Vienna and INPHO GmbH.
Sibson, R., 1981, A Brief Description of Natural Neighbor Interpolation, Chapter 2 in Interpolating multivariate data, John Wiley & Sons, New York, pp.21-36.
Smith, S.L., D.A., Holland and P.A., Longley, 2004, The importance of understanding error in lidar digital elevation models, International Archives of the Photogrammetry, Remote Sensingand Spatial Information Sciences, 35, pp.996-1001.
Su, J. and Bork, E., 2006, Influence of vegetation, slope and lidar sampling angle on DEM accuracy, Photogrammetric Engineering and Remote Sensing, 72(11), pp.1265-1274.
Tinkham, W.T., Smith, A.M.S., Hoffman, C., Hudak, A.T., Falkowski, M.J., Swanson, M.E. and Gessler, P.E., 2012, Investigating the influence of LiDAR ground surface errors on the utility of derived forest inventories, Canadian Journal of Forest Research, 42, pp.413-422.
USGS, 1983, USGS Digital Cartographic Data Standards Digital Elevation Models, Geological Survey Circular 895-B.
USGS, 2004, Landslide Types and Processes, Department of the Interior, U.S., Fact Sheet 2004-3072.
Varnes, D.J., 1978, Slope movement types and processes, In: Special Report 176: Landslides: Analysis and Control (Eds: Schuster, R. L. & Krizek, R. J.). Transportation and Road Research Board, National Academy of Science, Washington D. C., pp.11-33.
Vosselman, G. and Maas, H.G., 2001, Adjustment and Filtering of Raw Laser Altimetry Data, OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Elevation Models, Stockholm, pp.62-73.
Wehr, A. and Lohr, U., 1999, Airborne Laser Scanning–an Introduction and Overview, ISPRS Journal of Photogrammetry & Remote Sensing, 54, pp.68-82.
Weibel, R. and Heller, M., 1991, Digital terrain modelling. In: Maguire, D.J., Goodchild, M.F. and Rhind, D. (Eds.), Geographical Information Systems: Principles and Applications, Vol.1: Principles. Longman, Harlow, pp.269-297.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-09-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-09-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw