進階搜尋


下載電子全文  
系統識別號 U0026-2808201206441600
論文名稱(中文) 顳顎關節於功能活動及關節鬆動術之生物力學探討:屍體樣本研究
論文名稱(英文) Biomechanical Analysis of the Temporomandibular Joint during Functional Movements and Mobilization Techniques: A Cadaveric Study
校院名稱 成功大學
系所名稱(中) 物理治療研究所
系所名稱(英) Department of Physical Therapy
學年度 100
學期 2
出版年 101
研究生(中文) 邱眉齡
研究生(英文) Mei-Ling Chiu
學號 t66981017
學位類別 碩士
語文別 英文
論文頁數 88頁
口試委員 指導教授-徐阿田
口試委員-蔡一如
口試委員-何兆邦
口試委員-蘇錦勤
中文關鍵字 顳顎關節  功能活動  關節鬆動術  生物力學特性 
英文關鍵字 Temporomandibular joint  Functional movement  Joint mobilization  Biomechanical Property 
學科別分類
中文摘要 實驗背景與目的: 下頜的動作在日常生活中是非常重要的。然而,對於不同功能活動下下頷髁如何動作的研究仍舊不足,特別是在下頜前突、後縮、及外側偏移的研究更是稀少。此外,雖然關節鬆動術在臨床上已被用來治療顳顎關節疾病,卻尚未有文獻分析顳顎關節於執行關節鬆動術時之生物力學特性。因此,此篇研究的目的為探討顳顎關節於各項功能活動時的運動學表現及其在不同關節鬆動術下所產生之生物力學特性。
實驗方法與器材:本研究施行於9個頭部樣本,並藉由動作分析系統及六軸荷重計收集運動學和動力學資料。功能活動包含被動下頜張開、前突、後縮、及外側偏移,關節鬆動術包含單側和雙側向下滑動合併往前移動、向下滑動合併前旋、向下滑動合併後旋及向外滑動。下頜張開的動作會在功能活動與關節鬆動術結束後再次進行第二次測試。功能活動的部分分析下頷髁的旋轉及位移,關節鬆動術的部分則是分析下頷髁的位移及治療師使用的力量。
實驗結果:在功能活動的部份,被動下頜張開時下頷髁沿著橫軸旋轉16.11±3.03 度並產生向前(左側: 1.88±1.89公釐,右側: 2.24±1.42公釐)及向下(左側: 3.87±1.77公釐,右側: 3.53±2.18公釐)的位移。被動下頜前突及後縮時,分別產生下頷髁向前(左側: 1.09±0.15公釐,右側: 1.3±0.34公釐)及向後(左側: 1.04±0.49公釐,右側: 1.34±0.35公釐)的位移。被動下頜向左偏移時,左側的下頷髁產生向後(1.04±0.82公釐)、向外(1.34±0.44公釐)、向上(0.71±0.59公釐)的位移,右側的下頷髁則產生向前(1.32±0.87公釐)、向內(1.35±0.48公釐)、向下(0.91±0.54公釐)的位移。被動下頜向右偏移時,左側的下頷髁產生向前(1.51±0.8公釐)、向內(1.74±0.74公釐)、向下(1.4±0.6公釐)的位移,右側的下頷髁則產生向後(1.22±0.82公釐)、向外(1.66±0.7公釐)、向上(0.95±0.66公釐)的位移。在關節鬆動術的部分,單側與雙側向下滑動合併往前移動產生最多下頷髁向下(分別是2.59±1.75公釐和2.08±0.97公釐)與向前(分別是1.72±0.64公釐和1.58±0.52公釐)的位移;單側向下滑動合併往前移動與向外滑動則是產生最多下頷髁向外(分別是1.61±0.66公釐和0.83±0.44公釐)的位移。另外,第二次的下頜張開比第一次的下頜張開有更多的下頷髁旋轉(p=0.008)及向前(左側: p=0.011)和向下(左側: p=0.021,右側: p=0.021)的位移。
結論:本篇研究讓我們對於顳顎關於不同功能活動和關節鬆動術時的運動學表現有更進一步的了解。下頷髁在不同功能活動下所產生的旋轉和位移和先前文獻的結果吻合。此外,證實了在幾個不同的關節鬆動術中,單側與雙側向下滑動合併往前移動可應用於下頷髁往前、往下活動受限或下頜張開受限的病人,向下滑動合併往前移動與單側向外滑動則可應用於下頷髁往外活動受限的病人。
英文摘要 Background and Purpose: Mandibular movement is important in our daily life. However, there was insufficient study investigating the movement of the mandibular condyle during different functional movements, especially during jaw protrusion, retrusion, and lateral deviation. Besides, although joint mobilizations have been used clinically for managing the temporomandibular disorders, no existing literature analyzed the biomechanical characteristics of the TMJ during mobilizations. Therefore, the purpose of this study was to investigate the kinematics of the TMJ during jaw functional movements and the biomechanical characteristics of the TMJ during the execution of mobilization techniques.
Materials and Methods: For the present study, 9 fresh cadaveric head specimens were mounted on a test frame. The Vicon Motion Analysis System and a 6-axis load cell were used to collect kinematic and kinetic data. Functional movements studied were jaw opening, protrusion, retrusion, and lateral deviations. Joint mobilization techniques employed were unilateral inferior glide plus anterior translation (UIGAT), bilateral inferior glide plus anterior translation (BIGAT), inferior glide plus anterior rotation (IGAR), inferior glide plus posterior rotation (IGPR), and lateral glide. Jaw opening was tested again after functional movements and mobilization techniques had finished. The condylar rotation and the condylar translation of both left condyle (LC) and right condyle (RC) were analyzed for functional movements. The force applied by the therapist and the resultant condylar translation were analyzed for mobilization techniques.
Results: For functional movements, we found the condyle rotated around the frontal axis (16.11±3.03 degrees) and translated anteriorly (LC: 1.88±1.89 mm, RC: 2.24±1.42 mm) and inferiorly (LC: 3.87±1.77 mm, RC: 3.53±2.18 mm) during passive jaw opening Passive jaw protrusion and retrusion primarily produced anterior (LC: 1.09±0.15 mm, RC: 1.3±0.34 mm) and posterior (LC: 1.04±0.49 mm, RC: 1.34±0.35 mm) translation of the condyle, respectively. During passive jaw deviation to left side, the left condyle translated posteriorly (1.04±0.82 mm), laterally (1.34±0.44 mm), and superiorly (0.71±0.59 mm) and the right condyle translated anteriorly (1.32±0.87 mm), medially (1.35±0.48 mm), and inferiorly (0.91±0.54 mm). During passive jaw deviation to right side, the left condyle translated anteriorly (1.51±0.8 mm), medially (1.74±0.74 mm), and inferiorly (1.4±0.6 mm) and the right condyle translated posteriorly (1.22±0.82 mm), laterally (1.66±0.7 mm), and superiorly (0.95±0.66 mm). For mobilization techniques, the UIGAT and BIGAT produced most anterior translation (2.59±1.75 mm and 2.08±0.97 mm, respectively) and inferior translation (1.72±0.64 mm and 1.58±0.52 mm, respectively) of the condyle. The UIGAT and lateral glide produced most lateral translation (1.61±0.66 mm and 0.83±0.44 mm, respectively) of the condyle. Besides, there were significant increase of the condylar rotation (p=0.008) and the condylar translation in anterior (p=0.011 in LC) and inferior directions (p=0.021 in both LC and RC) during the 2nd session of jaw opening.
Conclusions: This study provided the kinematic characteristics of the TMJ during different functional movements and during execution of TMJ mobilizations. The directions of condylar rotation and condylar translation were consistent with previous studies. Besides, results of the present study suggest that UIGAT and BIGAT can be applied if the anterior or the inferior movement of the condyle is limited or if jaw opening is limited, and UIGAT and lateral glide can be applied if the lateral movement of the condyle is limited.
論文目次 中文摘要 I
ABSTRACT III
誌謝 VI
CONTENT VII
TABLE LIST IX
FIGURE LIST XI
CHAPTER 1 INTRODUCTION 1
1.1 Functional Anatomy of the Temporomandibular Joint 1
1.2 Biomechanics of the Temporomandibular Joint 6
1.3 Biomechanics of the Jaw Functional Movements 8
1.3.1 Jaw Opening (Jaw Depression) 8
1.3.2 Jaw Closing (Jaw Elevation) 10
1.3.3 Jaw Protrusion 11
1.3.4 Jaw Retrusion 11
1.3.5 Jaw Lateral Deviation 12
1.4 Clinical Use of the Joint Mobilization for Patient with Temporomandibular Disorder 13
1.5 Motivation and Purpose 17
CHAPTER 2 MATERIALS AND METHODS 18
2.1 Specimens and Instrumentation 18
2.1.1 Specimens 18
2.1.2 Specimen Preparation 18
2.1.3 Instrumentations 19
2.2 Experimental Procedures 22
2.2.1 Functional Movements 23
2.2.2 Mobilization Techniques 25
2.3 Data Processing 28
2.3.1 Cycle Determination for Functional Movements 29
2.3.2 Cycle Determination for Mobilization Techniques 33
2.4 Outcome Measures 35
2.5 Statistical Analysis 36
CHAPTER 3 RESULTS 37
3.1 Descriptive Statistics for Functional Movements and Mobilization Techniques 37
3.1.1 Jaw Opening/Closing Test 37
3.1.2 Jaw Protrusion/Retrusion Test 40
3.1.3 Jaw Left/Right Deviation Test 42
3.1.4 Unilateral Inferior Glide plus Anterior Translation (UIGAT) 44
3.1.5 Inferior Glide plus Posterior Rotation (IGPR) 46
3.1.6 Inferior Glide plus Anterior Rotation (IGAR) 48
3.1.7 Lateral glide 50
3.1.8 Bilateral Inferior Glide plus Anterior Translation (BIGAT) 52
3.2 The Reliability of Each Parameter during Functional Movements and Mobilization Techniques 54
3.3 Mobilization Techniques 57
3.3.1 The Condylar Translation among Mobilization Techniques 57
3.3.2 The Force Applied by the Therapist among Mobilization Techniques 63
3.4 The Effect of Joint Mobilizations 67
CHAPTER 4 DISCUSSION 70
4.1 Functional Movements 70
4.1.1 Jaw Opening/Closing Test 70
4.1.2 Jaw Protrusion and Retrusion Test 73
4.1.3 Jaw Left and Right Deviation Test 75
4.2 Mobilization Techniques 78
4.2.1 The Condylar Translation among Mobilization Techniques 78
4.2.2 The Force Applied by the Therapist during Mobilization 80
4.3 The Effect of Mobilization Techniques 82
4.4 Limitations 83
CHAPTER 5 CONCLUSIONS 84
REFERENCE 85

參考文獻 1.Ingawale S, Goswami T. Temporomandibular joint: disorders, treatments, and biomechanics. Annals of biomedical engineering. May 2009;37(5):976-996.
2.Laskin DM, Greene CS, WL H. Temporomandibular Disorders: An Evidence-Based Approach to Diagnosis and Treatment.: Quintessence Pub Co; 2006.
3.Neumann DA. Kinesiology of the musculoskeletal system : foundations for rehabilitation. 2nd ed. St. Louis, Mo.: Mosby/Elsevier; 2010.
4.Okeson JP. Management of temporomandibular disorders and occlusion. 6th ed. St. Louis, Mo.: Elsevier/Mosby; 2008.
5.Tanaka E, Detamore MS, Tanimoto K, Kawai N. Lubrication of the temporomandibular joint. Annals of biomedical engineering. Jan 2008;36(1):14-29.
6.Moore KL, Dalley AF. Clinically oriented anatomy. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 1999.
7.Gray R, Z. A-A. Temporomandibular disorders : a problem based approach: Wiley-Blackwell; 2011.
8.Sicher H, DuBrul EL. Sicher's Oral anatomy. 7th ed. St. Louis: Mosby; 1980.
9.Wink CS, St Onge M, Zimny ML. Neural elements in the human temporomandibular articular disc. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons. Apr 1992;50(4):334-337.
10.Lindauer SJ, Sabol G, Isaacson RJ, Davidovitch M. Condylar movement and mandibular rotation during jaw opening. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics. Jun 1995;107(6):573-577.
11.Friedman MH, Weisberg J. Application of orthopedic principles in evaluation of the temporomandibular joint. Physical therapy. May 1982;62(5):597-603.
12.Peck CC, Langenbach GE, Hannam AG. Dynamic simulation of muscle and articular properties during human wide jaw opening. Archives of oral biology. Nov 2000;45(11):963-982.
13.Dutton M. Orthopaedic examination, evaluation, and intervention. 2nd ed. New York: McGraw-Hill Medical; 2008.
14.Shellock FG, Powers C. Kinematic MRI of the Joints: Functional Anatomy, Kinesiology: Informa Healthcare; 2001.
15.Buschang PH, Throkmorton GS, Travers KH, Hayasaki H. Incisor and mandibular condylar movements of young adult females during maximum protrusion and lateratrusion of the jaw. Archives of oral biology. Jan 2001;46(1):39-48.
16.Meneil C. temporomandibular Disorders for Evaluation, Diagnosis, and Management. Chicago: IL:Quintessence; 1993.
17.Fricton J. Myogenous temporomandibular disorders: diagnostic and management considerations. Dental clinics of North America. Jan 2007;51(1):61-83, vi.
18.Gremillion HA. The prevalence and etiology of temporomandibular disorders and orofacial pain. Texas dental journal. Jul 2000;117(7):30-39.
19.Anastassaki A, Magnusson T. Patients referred to a specialist clinic because of suspected temporomandibular disorders: a survey of 3194 patients in respect of diagnoses, treatments, and treatment outcome. Acta odontologica Scandinavica. Aug 2004;62(4):183-192.
20.Isong U, Gansky SA, Plesh O. Temporomandibular joint and muscle disorder-type pain in U.S. adults: the National Health Interview Survey. Journal of orofacial pain. Fall 2008;22(4):317-322.
21.Ho S. The Temporomandibular Joint: Physical Therapy Patient Management Utilizing Current Evidence: Orthopaedic Section, APTA, Inc; 2011.
22.Taylor M, Suvinen T, P. R. The effect of Grade IV distraction mobilisation on patients with temporomandibular pain-dysfunction disorder. Physiotherapy Theory and Practice. 1994;10:129-136.
23.Austin BD, Shupe SM. The role of physical therapy in recovery after temporomandibular joint surgery. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons. May 1993;51(5):495-498.
24.Cleland J, Palmer J. Effectiveness of manual physical therapy, therapeutic exercise, and patient education on bilateral disc displacement without reduction- of the temporomandibular joint: a single-case design. The Journal of orthopaedic and sports physical therapy. Sep 2004;34(9):535-548.
25.Furto ES, Cleland JA, Whitman JM, Olson KA. Manual physical therapy interventions and exercise for patients with temporomandibular disorders. Cranio. Oct 2006;24(4):283-291.
26.Kalamir A, Pollard H, Vitiello AV, Bonello R. Manual therapy for temporomandibular disorders: A review of the literature. Journal of Bodywork and Movement Therapies. 2007;11(1):84-90.
27.Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. Journal of biomechanical engineering. May 1983;105(2):136-144.
28.Woltring HJ. 3-D Attitude Representation of Human Joints - a Standardization Proposal. J Biomech. Dec 1994;27(12):1399-1414.
29.Gamage SSHU, Lasenby J. New least squares solutions for estimating the average centre of rotation and the axis of rotation. J Biomech. Jan 2002;35(1):87-93.
30.Koolstra JH, van Eijden TM. Dynamics of the human masticatory muscles during a jaw open-close movement. J Biomech. Sep 1997;30(9):883-889.
31.Piehslinger E, Celar RM, Horejs T, Slavicek R. Orthopedic jaw movement observations. Part II: The rotational capacity of the mandible. Cranio. Jul 1993;11(3):206-210.
32.Salaorni C, Palla S. Condylar rotation and anterior translation in healthy human temporomandibular joints. Schweizer Monatsschrift fur Zahnmedizin = Revue mensuelle suisse d'odonto-stomatologie = Rivista mensile svizzera di odontologia e stomatologia / SSO. 1994;104(4):415-422.
33.Ferrario VF, Sforza C, Lovecchio N, Mian F. Quantification of translational and gliding components in human temporomandibular joint during mouth opening. Archives of oral biology. May 2005;50(5):507-515.
34.Mapelli A, Galante D, Lovecchio N, Sforza C, Ferrario VF. Translation and rotation movements of the mandible during mouth opening and closing. Clin Anat. Apr 2009;22(3):311-318.
35.Lewis RP, Buschang PH, Throckmorton GS. Sex differences in mandibular movements during opening and closing. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics. Sep 2001;120(3):294-303.
36.Naeije M. Local kinematic and anthropometric factors related to the maximum mouth opening in healthy individuals. Journal of oral rehabilitation. Jun 2002;29(6):534-539.
37.Travers KH, Buschang PH, Hayasaki H, Throckmorton GS. Associations between incisor and mandibular condylar movements during maximum mouth opening in humans. Archives of oral biology. Apr 2000;45(4):267-275.
38.Bendall JR. The shortening of rabbit muscles during rigor mortis; its relation to the breakdown of adenosine triphosphate and creatine phosphate and to muscular contraction. The Journal of physiology. Jun 1951;114(1-2):71-88.
39.Davies RE. A Molecular Theory of Muscle Contraction: Calcium-Dependent Contractions with Hydrogen Bond Formation Plus Atp-Dependent Extensions of Part of the Myosin-Actin Cross-Bridges. Nature. Sep 14 1963;199:1068-1074.
40.Gottsauner-Wolf F, Grabowski JJ, Chao EY, An KN. Effects of freeze/thaw conditioning on the tensile properties and failure mode of bone-muscle-bone units: a biomechanical and histological study in dogs. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. Jan 1995;13(1):90-95.
41.Martin DC, Medri MK, Chow RS, et al. Comparing human skeletal muscle architectural parameters of cadavers with in vivo ultrasonographic measurements. Journal of anatomy. Oct 2001;199(Pt 4):429-434.
42.Stegenga B, Bont LGMd. Management of temporomandibular joint degenerative diseases : biologic basis and treatment outcome. Basel ; Boston: Birkhäuser Verlag; 1996.
43.Nannmark U, Sennerby L, Haraldson T. Macroscopic, microscopic and radiologic assessment of the condylar part of the TMJ in elderly subjects. An autopsy study. Swedish dental journal. 1990;14(4):163-169.
44.Egermark-Eriksson I, Ingervall B, Carlsson GE. The dependence of mandibular dysfunction in children on functional and morphologic malocclusion. American journal of orthodontics. Mar 1983;83(3):187-194.
45.Kang JH, Chung SC, Fricton JR. Normal Movements of Mandible at the Mandibular Incisor. J Prosthet Dent. Nov 1991;66(5):687-692.
46.Dijkstra PU, Kropmans TJB, Stegenga B, De Bont LGM. Ratio between vertical and horizontal mandibular range of motion. Journal of oral rehabilitation. May 1998;25(5):353-357.
47.Theusner J, Plesh O, Curtis DA, Hutton JE. Axiographic Tracings of Temporomandibular-Joint Movements. J Prosthet Dent. Feb 1993;69(2):209-215.
48.Piehslinger E, Celar A, Schmid-Shwap M, Slavicek R. Orthopedic jaw movement observations. Part III: The quantitation of mediotrusion. Cranio. Jan 1994;12(1):33-37.
49.Gsellmann B, Schmid-Schwap M, Piehslinger E, Slavicek R. Lengths of condylar pathways measured with computerized axiography (CADIAX (R)) and occlusal index in patients and volunteers. Journal of oral rehabilitation. Feb 1998;25(2):146-152.
50.Lipman AG, American Society of Health-System Pharmacists. Pain management for primary care clinicians. Bethesda, MD: American Society of Health-System Pharmacists; 2004.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw