進階搜尋


 
系統識別號 U0026-2808201102014600
論文名稱(中文) 探討二氧化鈦奈米管結構與結晶度對細胞反應之影響
論文名稱(英文) The phase and crystallinity of titanium oxide nanotube arrays on the cell responses
校院名稱 成功大學
系所名稱(中) 醫學工程研究所碩博士班
系所名稱(英) Institute of Biomedical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 楊冠虹
研究生(英文) Guan-Hong Yang
學號 P86981229
學位類別 碩士
語文別 英文
論文頁數 67頁
口試委員 指導教授-李澤民
口試委員-陳炳宏
口試委員-林睿哲
口試委員-蔡偉博
共同指導教授-葉明龍
中文關鍵字 二氧化鈦奈米管陣列  真空熱處理  氧空位  碳化鈦 
英文關鍵字 titanium dioxide nanotube arrays  vacuum heat treatment  oxygen vacancies  titanium carbide 
學科別分類
中文摘要 鈦金屬雖然擁有許多優點且已被廣泛應用,但鈦金屬是屬於生物惰性的材料,故有良好且適當的表面處理非常重要,可提升植入手術的成功率。本研究利用陽極氧化處理的方式在純鈦金屬表面生成二氧化鈦奈米管陣列,並進行大氣下400oC及真空中400oC與700oC之熱處理。探討經過熱處理之後二氧化鈦奈米管結晶結構的變化對於機械性質以及細胞的生物反應有何影響。材料表面性質分析方面,利用低可變真空掃描式電子顯微鏡來觀察試片的表面形貌以及能量散射光譜儀來分析表面的化學元素組成;薄膜X光繞射儀分析表面的結晶相組成;靜態接觸角 (Contact Angle) 實驗用以分析試片之親疏水性;奈米壓痕試驗儀來量測機械性質的變化;生物反應方面,研究經過熱處理之試片對細胞貼附增生是否有影響,並使用掃描式電子顯微鏡觀察細胞的生長形貌。由SEM發現當試片以20V進行氧及氧化處理所得的奈米管內徑約為86 nm,經過各種熱處理後奈米管尺寸皆會改變為約66 nm,而簡單的利用調整陽極處理之反應電壓為18.5V便可製備出與熱處理後尺寸相符的奈米管陣列表面。TF-XRD的繞射圖譜顯示大氣與真空熱處理400oC後所得之相組成皆為銳鈦礦相 (anatase),而真空熱處理700oC之後二氧化鈦會轉變為碳化鈦結晶。兩個不同氣氛環境下400oC的熱處理組別可得到相同尺寸與相組成之奈米管,但卻有不同的接觸角結果。由光致螢光光譜儀的分析可知真空熱處理400oC後二氧化鈦層中會產生氧空位。此可能為影響細胞增生結果的主要原因。真空熱處理700oC形成碳化鈦結構,大幅的增進了奈米管的機械性質並且由細胞增生實驗可知此結構對細胞增長也有促進的效果。作為植體的表面改質有很大的潛力。
英文摘要 Titanium and its alloy are widely used in the implant materials of dental and orthopedic. But, Titanium is a bioinert material. The flat surface of titanium can’t bind with bone tissue well. There is a good method to solve this problem. It is surface modification! The aim of this study is to anneal the titanium oxide nanotube arrays surface in atmosphere and vacuum to change the crystal phase and observe the effect on the cellular behavior. The titanium dioxide nanotube arrays were formed by anidic oxidation treatment. Next, the samples are annealed in atmosphere at 400oC and in vacuum at 400oC and 700oC. Surface morphology was observed by LV-SEM. The phase composition was analyzed by TF-XRD. The contact angle used to analyze the surface energy. And nano-indenter used to measure the mechanical properties. For the cell responses, in vitro test was used to investigate the cell morphology on sample surface. After heat treatment, the dimensions of nanotube would be changed. Then simple to adjust the anodized voltage could be prepared the dimensions consistent with the sample after heat treatment. Pattern of TF-XRD shows that the phase were all in anatase after the sample annealed in air and vacuum at 400oC. But the two group were different in contact angle. The photoluminescence spectra showed that there were oxygen vacancies in the group of vacuum heat treatment at 400oC. This group was worse in mechanical properties and cell proliferation. And titanium carbide was formed by vacuum heat treatment at 700oC. This gruop had very well mechanical properties and cell behavior.
論文目次 Abstract I
中文摘要 II
誌謝 III
Table of contents IV
List of Tables VI
List of Figures VII
Chapter 1. Introduction 1
1-1 Background 1
1-2 Titanium dioxide 2
1-3 Anodization 3
1-4 Titanium dioxide nanotube arrays 3
1-5 Heat treatment 4
1-6 Motivation and objective 5
Chapter 2. Materials and Methods 6
2-1 Flow Chart of Experiment 6
2-2 Specimen Preparation 6
2-2-1 Titanium Substrates 6
2-2-2 Anodization 7
2-2-3 Heat Treatment 7
2-3 Specimen surface characteristic analysis 8
2-3-1 Surface morphology and chemical composition 8
2-3-2 Surface phase composition analysis 8
2-3-3 Surface wettability analysis 8
2-3-4 Photoluminescence (PL) spectra 8
2-3-5 Mechanical property 9
2-4 In vitro cell tests 10
2-4-1 Specimen sterilization 10
2-4-2 Cell culture 10
2-4-3 Cell proliferation (MTT assay) 10
2-4-4 Cell morphology 11
2-4-5 Statistical analysis 13
Chapter 3. Results 14
3-1 Specimen surface characteristic analysis 14
3-1-1 Surface morphology 14
3-1-2 Surface chemical composition 15
3-1-3 Surface phase composition 15
3-1-4 Surface wettability analysis 16
3-1-5 Photoluminescence spectra 16
3-1-6 Mechanical properties 17
3-2 In vitro cell tests 17
3-2-1 Cell proliferation (MTT assay) 17
3-2-2 Cell morphology 17
Chapter 4. Discussion 19
Chapter 5. Conclusion 25
References 26
參考文獻 [1] http://www.familycosmeticdentistrydentists.com/dentalimplants.htm
[2] G. E. Garrington, P. M. Lightbody, "Bioceramics and dentistry", J Biomed Mater Res, vol. 6, p.333-343, 1972.
[3] J. A. Hobkirk, R. M. Watson, L. J. J. Searson, "Introducing dental implants ", Churchill Livingstone, 2003.
[4] Z. Schwartz, B. D. Boyan, "Underlying mechanisms at the bone-biomaterial interface", Journal of Cellular Biochemistry, vol. 56, p. 340-347, 1994.
[5] A. Bigi, et al., "Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method", Biomaterials, vol.26, p. 4085-4089, 2005.
[6] P. I. Branemark, et al., "Osseointgegrated implants in the treatment of the edentulous jaw. Experience from a 10 year period", Scand J Plast Reconstr Surg, 1977.
[7] L. L. Hench, "Bioceramics: from concept to clinic", J. Am. Ceram. Soc., vol.74, p. 1487-1510, 1991.
[8] S. D. Mo and W. Y. Ching, "Electronic and optical properties of three phases of titanium dioxide rutile, anatase, and brookite," Physical Review B, vol. 51, 1995.
[9] G. A. Battiston, et al., "Dental implants of complex form coated by nanostructered TiO2 thin films via MOCVD," Materials Science Forum, vol. 352, p. 151-158, 2000.
[10] J. Liu, "Sol–gel deposited TiO2 film on NiTi surgical alloy for biocompatibility improvement," Thin Solid Films, vol. 429, p. 225-230, 2003.
[11] W. Zhou, et al., "The effect of surface roughness and wettability of nanostructured TiO2 film on TCA-8113 epithelial-like cells," Surface and Coatings Technology, vol. 200, p. 6155-6160, 2006.
[12] R. Karpagavalli, et al., "Corrosion behavior and biocompatibility of nanostructured TiO2 film on Ti6Al4V," Journal of Biomedical Materials Research Part A, vol. 83A, p. 1087-1095, 2007.
[13] T. Kasuga, et al., "Apatite formation on TiO2 in simulated body fluid," Journal of Crystal Growth, vol. 235, p. 235–240, 2002.
[14] M. Keshmiri, et al., "Apatite formation on TiO2 anatase microspheres," Journal of Non-Crystalline Solids, vol. 324, p. 289-294, 2003.
[15] J. M. Wu, "Low-temperature preparation of anatase and rutile layers on titanium substrates and their ability to induce in vitro apatite deposition," Journal of the American Ceramic Society, vol. 87, p. 1635-1642, 2004.
[16] E. S. Ghaith, et al., "Apatite formation on rutile type TiO2 films formed by laser irradiation," Journal of Materials Science, vol. 41, p. 2521-2524, 2006.
[17] Y. Han, et al., "Structure and in vitro bioactivity of titania-based films by micro-arc oxidation," Surface and Coatings Technology, vol. 168, p. 249-258, 2003.
[18] L. Li, et al., "Improved biological performance of Ti implants due to surface modification by micro-arc oxidation," Biomaterials, vol. 25, p. 2867-2875, 2004.
[19] Z. Zhao and S. Wen, "Direct preparation of CaTi4(PO4)6 coatings on the surface of titanium substrate by micro arc oxidation," Journal of Materials Science: Materials in Medicine, vol. 18, p. 2275-2281, 2007.
[20] W. Ran, et al., "Superior biocompatibility and osteogenic efficacy of micro-arc oxidation-treated titanium implants in the canine mandible," Biomedical Materials, vol. 4, p. 055003, 2009.
[21] Z. Q. Yao, et al., "Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation," Acta Biomaterialia, vol. 6, p. 2816-2825, 2010.
[22] V. Zwilling, et al., "Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach," Electrochimica Acta, vol. 45, p. 921-929, 1999.
[23] K. Mor and O. K. Varghese, "Fabrication of tapered, conical-shaped titania
nanotubes," J. Mater. Res., vol. 18, p. 2588-2593, 2003.
[24] A. Ghicov, et al., "Titanium oxide nanotubes prepared in phosphate electrolytes," Electrochemistry Communications, vol. 7, p. 505-509, 2005.
[25] J. M. Macak, et al., "High-aspect-ratio TiO2 nanotubes by anodization of titanium," Angewandte Chemie International Edition, vol. 44, p. 2100-2102, 2005.
[26] R. Ge, et al., "Fabrication and characterization of highly-ordered titania nanotubes via electrochemical anodization," Materials Letters, vol. 62, p. 2688-2691, 2008.
[27] J. Macak, et al., "TiO2 nanotubes: Self-organized electrochemical formation, properties and applications," Current Opinion in Solid State and Materials Science, vol. 11, p. 3-18, 2007.
[28] Kakoli Das, et al., "Surface Coatings for Improvement of Bone Cell Materials and Antimicrobial Activities of Ti Implants," J Biomed Mater Res Part B: Appl Biomater, vol. 87B, p. 455-460, 2008.
[29] K. S. Brammer, et al., "Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface," Acta Biomaterialia, vol. 5, p. 3215-3223, 2009.
[30] S. Oh, et al., "Stem cell fate dictated solely by altered nanotube dimension," Proceedings of the National Academy of Sciences, vol. 106, p. 2130-2135, 2009.
[31] W. Q. Yu, et al., "The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation," Journal of Biomedical Materials Research Part A, vol.94A, p. 1012-1022, 2010.
[32] W. Q. Yu, et al., "In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes," Oral Diseases, vol. 16, p. 624-630, 2010.
[33] Madhav Prasad Neupane, et al., "Influence of heat treatment on morphological changes of nano-structured titanium oxide formed by anodic oxidation of titanium in acidic fluoride solution", Bio-Medical Materials and Engineering, vol. 19, p 77–83, 2009.
[34] K. Eufinger, et al., "Photocatalytic activity of dc magnetron sputter deposited amorphous TiO2 thin films," Applied Surface Science, vol.254, p. 148-152, 2007.
[35] Jaan Aarik, et al., "Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition," Thin Solid Films, vol. 305, p. 270-273, 1997.
[36] Koji Iijima, et al., "Influence of oxygen vacancies on optical properties of anatase TiO2 thin films," Journal of Luminescence, vol. 128, p. 911–913, 2008.
[37] H. Tang, et al.," Photoluminescence in TiO2 anatase single crystals," Solid State Communications, vol. 87, p. 847-850, 1993.
[38] C. W. Jia, et al., "Visible and near-infrared photoluminescences of europium-doped titania film," Journal of Applied Physics, vol. 100, p.023529, 2006.
[39] S.K. Deb, et al., "Photoconductivity and photoluminescence in amorphous titanium dioxide," Solid State Communications, vol. 11, p. 713-715, 1972.
[40] P. Madhu Kumar, et al., "Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy correlation to presence of surface states," Thin Solid Films, vol. 358, p. 122-130, 2000.
[41] 郭光揚, "二氧化鈦薄膜室溫鐵磁性來源之研究," 國立成功大學, 物理研究所 碩士論文, 2007.
[42] J. F. Shackelford, W. Alexander, "Materials Science and Engineering Handbook, Third Edition," p.508.
[43] G. A. Crawford, et al., "Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substra," Acta Biomaterialia, vol. 3, p. 359-367, 2007.
[44] M. Chinmulgund, et al., "Effect of Ar gas pressure on growth, structure, and mechanical properties of sputtered Ti, Al, TiAl, and Ti3Al films," Thin Solid Films, vol. 270, p. 260-263,1995.
[45] 黃智偉, "Ti6Al4V合金表面鈍化膜TiO2真空相變機制之研究", 國立成功大學, 材料科學及工程研究所 碩士論文, 1999.
[46] Jong Hyeok Park, et al., "Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting," Nano Letters, vol. 6, p.24-28, 2006.
[47] Robert Hahn, et al., "Semimetallic TiO2 Nanotubes," Angew. Chem., vol. 121, p. 7372 –7375, 2009.
[48] Felix Schmidt-Stein, et al., "Mechanical properties of anatase and semi-metallic TiO2 nanotubes," Acta Materialia, vol. 58, p. 6317-6323, 2010.
[49] H. S. Uh, et al., "Enhanced field emission properties from titanium-coated carbon nanotubes," Diamond & Related Materials, vol. 19, p. 586-589, 2010.
[50] J. J. A. M. Van Raay, et al., "Biocompatibility of wear-resistant coatings in orthopaedic surgery in vitro testing with human fibroblast cell cultures," Journal of Materials Science: Materials in Medicien, vol. 6, p. 80-84, 1995.
[51] L. Yang, et al., "The impact of diamond nanocrystallinity on osteoblast functions," Biomaterials, vol. 30, p. 3458-3465, 2009.
[52] M. Allen, et al., "In vitro and in vivo investigations into the biocompatibility of diamond-like carbon (DLC) coatings for orthopedic applications," Journal of Biomedical Materials Research, vol. 58, p. 319-328, 2001.
[53] M. Brama, et al., "Effect of titanium carbide coating on the osseointegration response in vitro and in vivo," Biomaterials, vol. 28, p. 595-608, 2007.
[54] K. S. Brammer, et al., "Comparative cell behavior on carbon-coated TiO2 nanotube surfaces for osteoblasts vs. osteo-progenitor cells," Acta Biomaterialia, vol. 7, p. 2697-2703, 2011.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-09-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-09-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw