進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2807202023221400
論文名稱(中文) 上肢遠端機器輔助治療應用於中風患者上肢功能及其他健康相關表現之成效探索
論文名稱(英文) Exploring the Effects of Hand Robotic-assisted Therapy on Upper Extremity Function and Health-related Outcomes in Patients with Chronic Stroke
校院名稱 成功大學
系所名稱(中) 職能治療學系
系所名稱(英) Department of Occupational Therapy
學年度 108
學期 2
出版年 109
研究生(中文) 洪珮瑄
研究生(英文) Pei-Hsuan Hung
學號 T76074024
學位類別 碩士
語文別 中文
論文頁數 144頁
口試委員 指導教授-馬慧英
口試委員-吳菁宜
口試委員-陳官琳
口試委員-蔣瑋齊
召集委員-張谷州
中文關鍵字 機器輔助治療  外骨骼  終端控制  中風復健 
英文關鍵字 robot-assisted therapy  exoskeleton  end-effector  stroke rehabilitation 
學科別分類
中文摘要 機器輔助治療之機器設計形式主要有外骨骼型與終端控制型。外骨骼型的機器能貼合人體關節,模擬標準動作型態,直接帶動手指每一個關節的動作方向與速度。雖然許多研究顯示此類型機器可促進中風患者的上肢功能,但如何提升其效益仍有待進一步的研究。透過「鏡像促發」的鏡像視覺回饋,可能促進動作學習、增加患側注意力等,進而增加機器輔助治療成效。另外,終端控制型的機器輔助治療,為帶動手指尖端進行動作訓練,對於中風後上肢訓練亦有正向的效益,然而過去文獻未針對不同上肢損傷嚴重度的患者提供適當的治療流程建議,且在訓練流程的紀錄上大多不詳盡,透過此研究初步設計針對不同嚴重程度上肢損傷的中風患者之訓練流程,以利於轉譯至臨床情境。本研究主要分為兩大部分,第一部分為探討外骨骼型機器輔助治療結合鏡像促發,對中風患者上肢功能及健康相關表現之復健成效,並檢視長期效益與使用者經驗;第二部分為針對不同嚴重度中風患者使用終端控制型的訓練流程設計,並探討療效與使用者經驗。
第一部分研究為單盲隨機對照試驗,共15位中風三個月以上中風患者參與本研究,9位受試者分派至鏡像組,6位受試者分派至偽鏡像組。評估包含前測、後測與追蹤。兩組受試者均接受18次的介入訓練,一次60分鐘,一週2-3次,共持續進行6-9週。每次治療為20分鐘的鏡像促發、30分鐘的機器輔助治療與10分鐘功能性訓練。兩組訓練差異為鏡像組促發時可以看見健側手的鏡像視覺回饋,偽鏡像組則以黑布遮蔽鏡子,兩組其餘治療流程設計皆相同。本部分研究結果發現,機器輔助治療結合鏡像促發在傅格梅爾評估量表 (d=2.27)、肌肉力量 (d=0.74-0.89)、渥夫動作功能測驗之品質表現 (d=1.01)、動作活動日誌(使用量d=0.69、品質d=1.03)和中風影響量表 (d=1.28),可能有較偽鏡像促發有更高的治療效益,推論鏡像促發可能有助於增加機器助治療的效益,且療效大多具有三個月之長期療效。由使用者經驗得知,機器輔助治療為個人帶來動作上的正向效益,治療流程與內容在臨床具有可行性。
第二部分研究為個案系列研究,設計三種治療流程,分別針對重、中、輕度上肢動作損傷的中風患者,以連續被動模式、主動協助動作模式、互動遊戲、及實際功能性活動做不同的流程內容組合。共有1位重度組受試者、1位中度組受試者、及3位輕度組受試者參與本研究,每位受試者皆接受12-15次的介入訓練,每次50-60分鐘,每周4-5次,持續進行3週。本研究的結果發現,終端控制型上肢遠端機器輔助治療有助於輕中度動作損傷中風患者的上肢功能恢復,如傅格梅爾評估量表(受試者平均進步3.25分)、捏力(兩位受試者進步0.4公斤)、渥夫動作功能測驗之品質表現(平均進步2分)的提升,且具有正向使用經驗,但重度動作損傷受試者則在大多變項無明顯改變,且主觀認為效果有限,機器操作不易,重度動作損傷患者的治療流程需未來更進一步的探討。
本研究的結果發現,手部機器輔助治療大多有助於中風患者手部動作恢復,並對於大部分中風患者具正向的使用經驗。本研究有助於提供臨床進行外骨骼型機器治療結合鏡像促發活動,以及針對不同嚴重度中風患者,終端控制型機器治療的建議。但樣本數不足,仍需未來研究以更大量的樣本數以確定治療效益。
英文摘要 Research has shown positive effects of hand robot-assisted therapy (RT) on upper extremity (UE) function after stroke. This study is divided into two parts. The first part was to explore the effects of combined exoskeleton-type RT with mirror priming. The second part was to develop end-effector RT treatment protocols for patients with different levels of stroke severity. A total of 20 patients participated in this study (15 in randomized controlled trial of combined RT with mirror priming, and 5 in case-series study of end-effector RT). Each patient received 12-18 sessions of RT intervention. The results of the first part showed that exoskeleton-type RT was beneficial for UE function in patients with stroke. Mirror priming may enhance the effects of RT in motor recovery, muscle strength, functional performance, and participation of daily living. The results of the second part showed that end-effector RT may enhance UE function in patients with mild to moderate stroke. But the treatment protocol for patients with severe stroke needs further modification. Future research with a larger sample size is needed to verify the findings.
論文目次 表目錄 IV
圖目錄 V
中文摘要 VI
Extended Abstract IX
第一章、緒論 1
第一節、中風及上肢功能損傷 1
第二節、機器輔助治療及其理論機制 3
第三節、外骨骼型與終端控制型機器輔助治療 6
第二章、機器輔助治療結合鏡像促發對中風患者之上肢功能、健康相關表現之復健成效及其使用經驗探討 7
第一節、研究背景 7
壹、外骨骼訓練系統 7
貳、機器輔助治療結合鏡像促發 10
參、研究探討層面 13
肆、使用者經驗探討 14
第二節、研究目的與假設 15
壹、研究目的 15
貳、研究假設 15
第三節、研究方法 16
壹、研究設計 16
貳、受試者 16
參、使用儀器 17
肆、篩案工具 20
伍、研究結果評估 21
陸、收案與介入流程 38
柒、統計方法 42
第四節、研究結果 43
壹、人口學資料 43
貳、前後測分數與統計檢定 45
參、三個月追蹤與變化 54
肆、使用者經驗問卷與訪談 58
第五節、討論 68
壹、外骨骼上肢遠端機器治療效益 68
貳、鏡像促發效益 71
參、感覺功能 73
肆、機器輔助治療的長期效益 74
伍、表面肌電訊號功能效益 75
陸、機器輔助治療之使用者經驗與臨床應用性 76
柒、研究限制與未來建議 77
第六節、結論 79
第三章、 遠端機器輔助治療應用於不同嚴重度中風患者之流程設計先驅研究 80
第一節、研究背景 80
壹、終端控制型訓練系統 80
貳、實證實務之流程設計 86
第二節、研究目的 88
第三節、研究過程 88
壹、知識發現 (Knowledge discovery) 88
貳、證據統合 (Evidence summary) 88
參、轉入實踐的建議 (Translation into practice recommendations) 91
肆、臨床運用 (Implementation into practice);成效評值 (Evaluation) 96
第四節、研究方法 97
壹、研究設計 97
貳、受試者 97
參、使用儀器 98
肆、篩案工具 98
伍、研究結果評估 99
陸、收案與介入流程 102
柒、統計方法 104
第五節、研究結果 105
壹、人口學資料 105
貳、受試者前後測數值及無母數檢定 107
參、使用者經驗問卷與訪談 113
第六節、討論 119
第七節、結論 122
第肆章、研究總結與應用 123
第伍章、 參考文獻 124
英文參考文獻 124
中文參考文獻 137
第陸章、附錄 138
壹、 使用者經驗問卷與訪談大綱 138
貳、 AMADEO詳細流程建議 142
參考文獻 Balasubramanian, S., Klein, J., & Burdet, E. (2010). Robot-assisted rehabilitation of hand function. Current Opinion in Neurology, 23(6), 661-670. doi:10.1097/WCO.0b013e32833e99a4
Basteris, A., Nijenhuis, S. M., Stienen, A. H., Buurke, J. H., Prange, G. B., & Amirabdollahian, F. (2014). Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. Journal of Neuroengineering and Rehabilitation, 11(111), 1-15. https://doi.org/10.1186/1743-0003-11-111
Beom, J., Koh, S., Nam, H. S., Kim, W., Kim, Y., Seo, H. G., ... & Kim, S. (2016). Robotic mirror therapy system for functional recovery of hemiplegic arms. Journal of Visualized Experiments, 114, e54521. https://doi.org/10.3791/54521
Bishop, L., Gordon, A. M., & Kim, H. (2017). Hand Robotic Therapy in Children with Hemiparesis: A Pilot Study. American Journal of Physical Medicine & Rehabilitation, 96(1), 1-7. doi: 10.1097/phm.0000000000000537
Bohannon, R. W., & Smith, M. B. (1987). Interrater reliability of a Modified Ashworth Scale of muscle spasticity. Physical Therapy. 67, 206-207. doi: 10.1093/ptj/67.2.206
Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377-381. https://doi.org/10.1249/00005768-198205000-00012
Carr, J. H., & Shepherd, R. B. (2009). Neurological Rehabilitation: Optimizing Motor Performance (pp.126-149). London: Elsevier Health Sciences.
Chang, W. H., & Kim, Y. H. (2013). Robot-assisted therapy in stroke rehabilitation. Journal of Stroke, 15(3), 174-181. doi: 10.5853/jos.2013.15.3.174
Chollet, F., Cramer, S. C., Stinear, C., Kappelle, L. J., Baron, J. C., Weiller, C., ... & Adams Jr, H. (2013). Pharmacological therapies in post stroke recovery: recommendations for future clinical trials. Journal of Neurology, 261(8), 1461-1468. doi: 10.1007/s00415-013-7172-z
Chuang, I. C., Lin, K. C., Wu, C. Y., Hsieh, Y. W., Liu, C. T., & Chen, C. L. (2017). Using Rasch analysis to validate the Motor Activity Log and the Lower Functioning Motor Activity Log in patients with stroke. Physical Therapy, 97(10), 1030-1040. doi: 10.1093/ptj/pzx071.
Compston, A. (2010). Aids to the investigation of peripheral nerve injuries. Medical Research Council: Nerve Injuries Research Committee. His Majesty's Stationery Office: 1942; pp. 48 (iii) and 74 figures and 7 diagrams; with aids to the examination of the peripheral nervous system. By Michael O’Brien for the Guarantors of Brain. Saunders Elsevier: 2010; pp.[8] 64 and 94 Figures. Brain, 133(10), 2838-2844. https://doi.org/10.1093/brain/awq270
Cumming, T. B., Churilov, L., Lindén, T., & Bernhardt, J. (2013). Montreal Cognitive Assessment and Mini–Mental State Examination are both valid cognitive tools in stroke. Acta Neurologica Scandinavica, 128(2), 122-129. doi: 10.1111/ane.12084
Deconinck, F. J., Smorenburg, A. R., Benham, A., Ledebt, A., Feltham, M. G., & Savelsbergh, G. J. (2015). Reflections on mirror therapy: a systematic review of the effect of mirror visual feedback on the brain. Neurorehabilitation and Neural Repair, 29(4), 349-361. doi: 10.1177/1545968314546134
Dipietro, L., Krebs, H. I., Volpe, B. T., Stein, J., Bever, C., Mernoff, S. T., ... & Hogan, N. (2012). Learning, not adaptation, characterizes stroke motor recovery: evidence from kinematic changes induced by robot-assisted therapy in trained and untrained task in the same workspace. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(1), 48-57. doi: 10.1109/TNSRE.2011.2175008
Dohle, C., Püllen, J., Nakaten, A., Küst, J., Rietz, C., & Karbe, H. (2009). Mirror therapy promotes recovery from severe hemiparesis: a randomized controlled trial. Neurorehabilitation and neural repair, 23(3), 209-217. doi:10.1177/1545968308324786
Duncan, P. W., Bode, R. K., Lai, S. M., Perera, S., & Glycine Antagonist in Neuroprotection Americas Investigators. (2003). Rasch analysis of a new stroke-specific outcome scale: The Stroke Impact Scale. Archives of Physical Medicine and Rehabilitation, 84(7), 950-963. doi: 10.1016/s0003-9993(03)00035-2
Edwards, D. F., Lang, C. E., Wagner, J. M., Birkenmeier, R., & Dromerick, A. W. (2012). An evaluation of the Wolf Motor Function Test in motor trials early after stroke. Archives of Physical Medicine and Rehabilitation, 93(4), 660-668. doi: 10.1016/j.apmr.2011.10.005
Elnady, A., Mortenson, W. B., & Menon, C. (2018). Perceptions of Existing Wearable Robotic Devices for Upper Extremity and Suggestions for Their Development: Findings From Therapists and People With Stroke. JMIR Rehabilitation and Assistive Technologies, 5(1), e12. doi: 10.2196/rehab.9535
Figueiredo, I. M., Sampaio, R. F., Mancini, M. C., Silva, F. C. M., & Souza, M. A. P. (2007). Test of grip strength using the Jamar dynamometer. Acta Fisiátrica, 14(2), 104-110. doi: 10.5935/0104-7795.20070002
Frost, Y., Weingarden, H., Zeilig, G., Nota, A., & Rand, D. (2015). Self-care self-efficacy correlates with independence in basic activities of daily living in individuals with chronic stroke. Journal of Stroke and Cerebrovascular Diseases, 24(7), 1649-1655. doi: 10.1016/j.jstrokecerebrovasdis.2015.03.054
Fugl-Meyer, A. R., Jääskö, L., Leyman, I., Olsson, S., & Steglind, S. (1975). The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scandinavian Journal of Rehabilitation Medicine, 7(1), 13-31.
Gladman, J. R. F., Lincoln, N. B., & Adams, S. A. (1993). Use of the extended ADL scale with stroke patients. Age and Ageing, 22(6), 419-424. https://doi.org/10.1093/ageing/22.6.419
Gompertz, P., Pound, P., & Ebrahim, S. (1994). Validity of the extended activities of daily living scale. Clinical rehabilitation, 8(4), 275-280. https://doi.org/10.1177/026921559400800401, as cited in Wu, C. Y., Chuang, L. L., Lin, K. C., & Hong, W. H. (2011). Responsiveness, minimal detectable change, and minimal clinically important difference of the Nottingham Extended Activities of Daily Living Scale in patients with improved performance after stroke rehabilitation. Archives of Physical Medicine and Rehabilitation, 92(8), 1281-1287. https://doi.org/10.1016/j.apmr.2011.03.008
Gregson, J. M., Leathley, M., Moore, A. P., Sharma, A. K., Smith, T. L., & Watkins, C. L. (1999). Reliability of the Tone Assessment Scale and the modified Ashworth scale as clinical tools for assessing poststroke spasticity. Archives of physical medicine and rehabilitation, 80(9), 1013-1016. doi: 10.1016/s0003-9993(99)90053-9
Gregson, J. M., Leathley, M. J., Moore, A. P., Smith, T. L., Sharma, A. K., & Watkins, C. L. (2000). Reliability of measurements of muscle tone and muscle power in stroke patients. Age and Ageing, 29(3), 223-228. doi: 10.1093/ageing/29.3.223
Hartman-Maeir, A., Soroker, N., Ring, H., Avni, N., & Katz, N. (2007). Activities, participation and satisfaction one-year post stroke. Disability and Rehabilitation, 29(7), 559–566. doi: 10.1080/09638280600924996
Harmsen, W. J., Bussmann, J. B., Selles, R. W., Hurkmans, H. L., & Ribbers, G. M. (2015). A mirror therapy–based action observation protocol to improve motor learning after stroke. Neurorehabilitation and Neural Repair, 29(6), 509–516. doi: 10.1177/1545968314558598
Hatem, S. M., Saussez, G., della Faille, M., Prist, V., Zhang, X., Dispa, D., & Bleyenheuft, Y. (2016). Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Frontiers in Human Neuroscience, 10, 442. doi: 10.3389/fnhum.2016.00442
Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. Psychology Press. New York: Wiley.
Hellström, K., Lindmark, B., Wahlberg, B., & Fugl-Meyer, A. R. (2003). Self-efficacy in relation to impairments and activities of daily living disability in elderly patients with stroke: a prospective investigation. Journal of rehabilitation medicine, 35(5), 202-207. doi: 10.1080/16501970310000836
Hsueh, I. P., Huang, S. L., Chen, M. H., Jush, S. D., & Hsieh, C. L. (2000). Evaluation of stroke patients with the extended activities of daily living scale in Taiwan. Disability and Rehabilitation, 22(11), 495-500. doi: 10.1080/096382800413989
Hu, X. L., Tong, K. Y., Wei, X. J., Rong, W., Susanto, E. A., & Ho, S. K. (2013). The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot. Journal of Electromyography and Kinesiology, 23(5), 1065-1074. doi: 10.1016/j.jelekin.2013.07.007
Huang, Y., Lai, W. P., Qian, Q., Hu, X., Tam, E. W., & Zheng, Y. (2018). Translation of robot-assisted rehabilitation to clinical service: a comparison of the rehabilitation effectiveness of EMG-driven robot hand assisted upper limb training in practical clinical service and in clinical trial with laboratory configuration for chronic stroke. Biomedical Engineering Online, 17(1), 91. https://doi.org/10.1186/s12938-018-0516-2
Hung, C. S., Hsieh, Y. W., Wu, C. Y., Lin, Y. T., Lin, K. C., & Chen, C. L. (2016). The effects of combination of robot-assisted therapy with task-specific or impairment-oriented training on motor function and quality of life in chronic stroke. American Academy of Physical Medicine and Rehabilitation, 8(8), 721-729. doi: 10.1016/j.pmrj.2016.01.008
Hwang, C. H., Seong, J. W., & Son, D. S. (2012). Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: a prospective randomized clinical trial of efficacy. Clinical Rehabilitation, 26(8), 696-704. doi:10.1177/0269215511431473
Jackson, A., Zimmermann, J.B. (2012). Neural interfaces for the brain and spinal cord restoring motor function: nature reviews. Neurology, 8(12), 690–699. doi:10.1038/nrneurol.2012.219
Jones, F., Partridge, C., & Reid, F. (2008). The Stroke Self‐Efficacy Questionnaire: measuring individual confidence in functional performance after stroke. Journal of Clinical Nursing, 17(7b), 244-252. doi: 10.1111/j.1365-2702.2008.02333.x
Kim, G. J., Taub, M., Creelman, C., Cahalan, C., O’Dell, M. W., & Stein, J. (2019). Feasibility of an electromyography-triggered hand robot for people after chronic stroke. American Journal of Occupational Therapy, 73(4), 7304345040. https://doi.org/10.5014/ajot.2019.030908
Korpershoek, C., van der Bijl, J., & Hafsteinsdóttir, T. B. (2011). Self‐efficacy and its influence on recovery of patients with stroke: a systematic review. Journal of Advanced Nursing, 67(9), 1876-1894. doi: 10.1111/j.1365-2648.2011.05659.x
Li, F., Wu, Y., & Li, X. (2014). Test-retest reliability and inter-rater reliability of the Modified Tardieu Scale and the Modified Ashworth Scale in hemiplegic patients with stroke. European Journal of Physical and Rehabilitation Medicine, 50(1), 9-15.
Li, Y. C., Wu, C. Y., Hsieh, Y. W., Lin, K. C., Yao, G., Chen, C. L., & Lee, Y. Y. (2019). The Priming Effects of Mirror Visual Feedback on Bilateral Task Practice: A Randomized Controlled Study. Occupational Therapy International, 2019. 3180306. https://doi.org/10.1155/2019/3180306
Lin, J. H., Hsu, M. J., Sheu, C. F., Wu, T. S., Lin, R. T., Chen, C. H., & Hsieh, C. L. (2009). Psychometric comparisons of 4 measures for assessing upper-extremity function in people with stroke. Physical Therapy, 89(8), 840-850. https://doi.org/10.2522/ptj.20080285
Lin, K. C., Lin, T., Wu, C. Y., Hsieh, Y. W., Chen, C. L., & Lee, P. C. (2010). Psychometric comparisons of the Stroke Impact Scale 3.0 and Stroke-Specific Quality of Life Scale. Quality of Life Research, 19(3), 435-443. doi: 10.1007/s11136-010-9597-5
Lincoln, N. B., Jackson, J. M., & Adams, S. A. (1998). Reliability and revision of the Nottingham Sensory Assessment for stroke patients. Physiotherapy, 84(8), 358-365. https://doi.org/10.1016/S0031-9406(05)61454-X
Lo, A. C., Guarino, P. D., Richards, L. G., Haselkorn, J. K., Wittenberg, G. F., Federman, D. G., ... & Peduzzi, P. (2010). Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine, 362(19), 1772-1783. doi: 10.1056/NEJMoa0911341
Lo, K., Stephenson, M., & Lockwood, C. (2017). Effectiveness of robotic assisted rehabilitation for mobility and functional ability in adult stroke patients: a systematic review. JBI Database of Systematic Reviews and Implementation Reports, 15(12), 3049-3091. doi: 10.11124/JBISRIR-2016-002957
Lum, P. S., Godfrey, S. B., Brokaw, E. B., Holley, R. J., & Nichols, D. (2012). Robotic approaches for rehabilitation of hand function after stroke. American Journal of Physical Medicine & Rehabilitation, 91(11), S242-S254. doi:10.1097/PHM.0b013e31826bcedb
Marcel, I. (1991). Patient and staff acceptance of robotic technology in occupational therapy: a pilot study. Journal of Rehabilitation Research and Development, 28(2), 33-44. doi: 10.1682/JRRD.1991.04.0033
Mathiowetz, V., Weber, K., Volland, G., & Kashman, N. (1984). Reliability and validity of grip and pinch strength evaluations. Journal of Hand Surgery, 9(2), 222-226. doi: 10.1016/s0363-5023(84)80146-x
Mathiowetz, V., Weber, K., Kashman, N., & Volland, G. (1985). Adult norms for the nine hole peg test of finger dexterity. The Occupational Therapy Journal of Research, 5(1), 24-38. https://doi.org/10.1177/153944928500500102
Maujean, A., Davis, P., Kendall, E., Casey, L., & Loxton, N. (2014). The daily living self-efficacy scale: a new measure for assessing self-efficacy in stroke survivors. Disability and Rehabilitation, 36(6), 504-511. doi:10.3109/09638288.2013.804592
Medical Research Council. (1976). Aids to the Examination of the Peripheral Nervous System. (Memorandum No.45, superseding War Memorandum No.7). London: Her Majesty’s Stationery Office.
Melnyk, B. M., & Fineout-Overholt, E. (2011). Evidence-based practice in nursing & healthcare: A guide to best practice. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins.
Min, J. H., Shin, Y. I., Joa, K. L., Ko, S. H., Shin, M. J., Chang, J. H., & Ko, H. Y. (2012). The correlation between modified Ashworth scale and biceps T-reflex and inter-rater and intra-rater reliability of biceps T-reflex. Annals of Rehabilitation Medicine, 36(4), 538-543. doi:10.5535/arm.2012.36.4.538
Molteni, F., Gasperini, G., Cannaviello, G., & Guanziroli, E. (2018). Exoskeleton and end-effector robots for upper and lower limbs rehabilitation: Narrative review. Physical Medicine and Rehabilitation, 10(9), S174-S188. doi: 10.1016/j.pmrj.2018.06.005
Morris, D. M., Uswatte, G., Crago, J. E., Cook III, E. W., & Taub, E. (2001). The reliability of the wolf motor function test for assessing upper extremity function after stroke. Archives of Physical Medicine and Rehabilitation, 82(6), 750-755. doi: 10.1053/apmr.2001.23183
Nakayama, H., Jørgensen, H. S., Raaschou, H. O., & Olsen, T. S. (1994). Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Archives of Physical Medicine and Rehabilitation, 75(4), 394-398. doi: 10.1016/0003-9993(94)90161-9.
Nam, H. S., Koh, S., Beom, J., Kim, Y. J., Park, J. W., Koh, E. S., ... & Kim, S. (2017). Recovery of proprioception in the upper extremity by robotic mirror therapy: A clinical pilot study for proof of concept. Journal of Korean Medical Science, 32(10), 1568-1575. doi: 10.3346/jkms.2017.32.10.1568
Nouri, F. M., & Lincoln, N. B. (1987). An extended activities of daily living scale for stroke patients. Clinical Rehabilitation, 1(4), 301-305. https://doi.org/10.1177/026921558700100409, as cited in Wu, C. Y., Chuang, L. L., Lin, K. C., & Hong, W. H. (2011). Responsiveness, minimal detectable change, and minimal clinically important difference of the Nottingham Extended Activities of Daily Living Scale in patients with improved performance after stroke rehabilitation. Archives of Physical Medicine and Rehabilitation, 92(8), 1281-1287. https://doi.org/10.1016/j.apmr.2011.03.008
Ockenfeld, C., Tong, R. K., Susanto, E. A., Ho, S. K., & Hu, X. L. (2013, June). Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: Stroke rehabilitation. In 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR) (pp. 1-4). IEEE. doi: 10.1109/icorr.2013.6650392
Orihuela-Espina, F., Roldán, G. F., Sánchez-Villavicencio, I., Palafox, L., Leder, R., Sucar, L. E., & Hernández-Franco, J. (2016). Robot training for hand motor recovery in subacute stroke patients: a randomized controlled trial. Journal of Hand Therapy, 29(1), 51-57. doi: 10.1016/j.jht.2015.11.006
Pinter, D., Pegritz, S., Pargfrieder, C., Reiter, G., Wurm, W., Gattringer, T., ... & Enzinger, C. (2013). Exploratory study on the effects of a robotic hand rehabilitation device on changes in grip strength and brain activity after stroke. Topics in stroke rehabilitation, 20(4), 308-316. doi: 10.1310/tsr2004-308.
Pons, J. L., Raya, R., & González, J. (2015). Emerging Therapies in Neurorehabilitation II. Berlin; Heidelberg: Springer-Verlag. pp.197-223.
Rand, D., & Eng, J. J. (2015). Predicting daily use of the affected upper extremity 1 year after stroke. Journal of Stroke and Cerebrovascular Diseases, 24(2), 274-283. doi: 10.1016/j.jstrokecerebrovasdis.2014.07.039
Reinkensmeyer D., & Dietz, V. (2016). Neurorehabilitation Technology (2nd ed). Berlin; Heidelberg: Springer-Verlag. Chapter 8.
Robinson-Smith, G., Johnston, M. V., & Allen, J. (2000). Self-care self-efficacy, quality of life, and depression after stroke. Archives of physical medicine and rehabilitation, 81(4), 460-464. doi: 10.1053/mr.2000.3863
Sale, P., Lombardi, V., & Franceschini, M. (2012). Hand robotics rehabilitation: feasibility and preliminary results of a robotic treatment in patients with hemiparesis. Stroke research and treatment, 2012: 820931. https://doi.org/10.1155/2012/820931
Sale, P., Mazzoleni, S., Lombardi, V., Galafate, D., Massimiani, M. P., Posteraro, F., ... & Franceschini, M. (2014). Recovery of hand function with robot-assisted therapy in acute stroke patients: a randomized-controlled trial. International Journal of Rehabilitation Research, 37(3), 236-242. doi: 10.1097/MRR.0000000000000059
Scalha, T. B., Miyasaki, E., Lima, N. M. F. V., & Borges, G. (2011). Correlations between motor and sensory functions in upper limb chronic hemiparetics after stroke. Arquivos de neuro-psiquiatria, 69(4), 624-629. https://doi.org/10.1590/S0004-282X2011000500010
Shah, N., Amirabdollahian, F., & Basteris, A. (2014). Designing motivational games for stroke rehabilitation. In 2014 7th International Conference on Human System Interactions (HSI) (pp. 166-171). [6860468] IEEE Computer Society. https://doi.org/10.1109/HSI.2014.6860468
Shirzad, N., & Van der Loos, H. M. (2016). Evaluating the user experience of exercising reaching motions with a robot that predicts desired movement difficulty. Journal of Motor Behavior, 48(1), 31-46. doi: 10.1080/00222895.2015.1035430
Sivan, M., O'Connor, R. J., Makower, S., Levesley, M., & Bhakta, B. (2011). Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke. Journal of rehabilitation medicine, 43(3), 181-189. doi:10.2340/16501977-0674
Small, S. L., Buccino, G., & Solodkin, A. (2012). The mirror neuron system and treatment of stroke. Developmental Psychobiology, 54(3), 293-310. doi: 10.1002/dev.20504
Stein, J., Bishop, L., Gillen, G., & Helbok, R. (2011). Robot-assisted exercise for hand weakness after stroke: a pilot study. American Journal of Physical Medicine & Rehabilitation, 90(11), 887-894. doi: 10.1097/PHM.0b013e3182328623
Stoykov, M. E., & Madhavan, S. (2015). Motor priming in neurorehabilitation. Journal of Neurologic Physical Therapy, 39(1), 33–42. doi: 10.1097/NPT.0000000000000065
Taub, E., McCulloch, K., Uswatte, G., Morris, D. M. (2011) Motor Activity Log (MAL) Manual. Birmingham, AL: University of Alabama CI Therapy Research Group.
Taub, E., Miller, N. E., Novack, T. A., Cook III, E.W., Fleming, W. C., Nepomuceno, C. S., . . . Crago, J. E. (1993). Technique to improve chronic motor deficit after stroke. Archives of Physical Medicine and Rehabilitation, 74(4), 347-354.
Tombaugh, T. N., & McIntyre, N. J. (1992). The mini‐mental state examination: a comprehensive review. Journal of the American Geriatrics Society, 40(9), 922-935. https://doi.org/10.1111/j.1532-5415.1992.tb01992.x
Tong, K. Y., Ho, S. K., Pang, P. M. K., Hu, X. L., Tam, W. K., Fung, K. L., ... & Chen, M. (2010, August). An intention driven hand functions task training robotic system. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010:3406-3409. doi:10.1109/IEMBS.2010.5627930
Uswatte, G., Taub, E., Morris, D., Light, K., & Thompson, P. A. (2006). The Motor Activity Log-28: Assessing daily use of the hemiparetic arm after stroke. Neurology, 67(7), 1189-1194. doi: 10.1212/01.wnl.0000238164.90657.c2
Veerbeek, J. M., Langbroek-Amersfoort, A. C., Van Wegen, E. E., Meskers, C. G., & Kwakkel, G. (2017). Effects of robot-assisted therapy for the upper limb after stroke: a systematic review and meta-analysis. Neurorehabilitation and Neural Repair, 31(2), 107-121. doi: 10.1177/1545968316666957
Williams, R. M., & Myers, A. M. (1998). Functional Abilities Confidence Scale: a clinical measure for injured workers with acute low back pain. Physical Therapy, 78(6), 624-634. doi: 10.1093/ptj/78.6.624
Wolf, S. L., Lecraw, D. E., Barton, L. A., & Jann, B. B. (1989). Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Experimental Neurology, 104(2), 125-132. doi: 10.1016/s0014-4886(89)80005-6
Wolf, S. L. (1983). Electromyographic biofeedback applications to stroke patients: a critical review. Physical therapy, 63(9), 1448-1459. doi: 10.1093/ptj/63.9.1448
Wolf, S. L., Catlin, P. A., Ellis, M., Archer, A. L., Morgan, B., & Piacentino, A. (2001). Assessing Wolf motor function test as outcome measure for research in patients after stroke. Stroke, 32(7), 1635-1639. doi: 10.1161/01.str.32.7.1635
World Health Organization (WHO). (2002). Towards a common language for functioning, disability, and health: ICF. The International Classification of Functioning, Disability and Health.
Wu, C. Y., Chuang, I. C., Ma, H. I., Lin, K. C., & Chen, C. L. (2016). Validity and responsiveness of the revised Nottingham sensation assessment for outcome evaluation in stroke rehabilitation. American Journal of Occupational Therapy, 70(2), 7002290040p1-7002290040p8. doi: 10.5014/ajot.2016.018390
Wu, C. Y., Chuang, L. L., Lin, K. C., & Hong, W. H. (2011). Responsiveness, minimal detectable change, and minimal clinically important difference of the Nottingham Extended Activities of Daily Living Scale in patients with improved performance after stroke rehabilitation. Archives of Physical Medicine and Rehabilitation, 92(8), 1281-1287. https://doi.org/10.1016/j.apmr.2011.03.008
Wu, C. Y., Huang, P. C., Chen, Y. T., Lin, K. C., & Yang, H. W. (2013). Effects of mirror therapy on motor and sensory recovery in chronic stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation, 94(6), 1023-1030. doi: 10.1016/j.apmr.2013.02.007
李承昱、吳菁宜、蔣瑋齊、鄭朝謚、王瑋均 (2018)。機器輔助治療對中風病患手功能復健成效之系統性文獻回顧。臺灣職能治療研究與實務雜誌,14,47-55。doi: 10.6534/jtotrp.201806_14(1).0005
林嘉皇、黃奕清、劉燦宏、吳菁宜、王詩涵、黃百川 (2013)。 鏡像治療對慢性腦中風患者上肢動作功能之療效。臺灣職能治療研究與實務雜誌,9,28-40。doi: 10.6534/jtotrp.2013.9(1).28
范詩辰、許尚華 (2012)。資訊科技於銀髮族及殘障者復健照護應用(未出版之博士論文)。國立交通大學,新竹市。
梁佩蓉、林佩欣 (2016)。中風衝擊量表用於台灣中風患者之信效度測量。物理治療,41,28-36。doi: 10.6215/FJPT.PTS1433262535
黃佳琦(譯)(2012)。神經復健:動作表現最佳化(原作者:Carr, J. & Shephered, R.)。臺北市:台灣愛思唯爾。(原著出版年:2009)
黃怡靜、林恭宏、吳姿誼、呂文賢、陳怡妙、謝清麟 (2013)。中風個案自陳職能治療服務需求與滿意度之探討。臺灣職能治療研究與實務雜誌,9(2),99-112。doi: 10.6534/jtotrp.2013.9(2).99
廖婉彣 (2010)。機器輔助療法改善中風病患肌肉功能與日常活動的成效:治療強度效應之研究(碩士論文)。國立台灣大學,台北市。取自華藝電子資料庫 (doi: 10.6342/NTU.2010.00218)。
臺灣衛生福利部 (2018)。 民107年死因統計分析. Retrieve from https://dep.mohw.gov.tw/DOS/cp-4472-48034-113.html
羅俊雄 (2019)。機器前誘式鏡像治療與雙側上肢練習結合居家轉移練習方案於中風復健療效:先導性研究(碩士論文)。國立台灣大學,台北市。取自華藝電子資料庫 (doi:10.6342/NTU201903509)。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw