進階搜尋


下載電子全文  
系統識別號 U0026-2807202018311500
論文名稱(中文) 工業物聯網之邊際運算嵌入式系統設計與軸承狀態即時監測應用
論文名稱(英文) Design of Embedded System with Edge Computing Applications for Industrial Internet of Things and Real-time Monitoring of Bearing Condition
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 林旻杰
研究生(英文) Min-Chieh Lin
學號 N26071542
學位類別 碩士
語文別 中文
論文頁數 74頁
口試委員 指導教授-戴政祺
口試委員-林志隆
口試委員-李宗勳
口試委員-黃世杰
口試委員-楊慶隆
中文關鍵字 邊際運算  嵌入式系統  軸承缺陷檢測  微機電感測器  工業物聯網 
英文關鍵字 edge computing  embedded system  bearing defects detection  MEMS sensor  industrial internet of things 
學科別分類
中文摘要 在工業物聯網、雲端大數據的蓬勃發展下,邊際運算之資料處理方式因而興起,將邊緣設備中取得之資料利用邊緣資源做即時處理與判斷,讓使用者不再需要靠資料中心做分析或決策。邊際運算能有效的解決資料傳輸量過大、物聯網傳輸設備過多導致之帶寬壅塞、響應時間過長等問題。軸承對於旋轉電機運轉扮演非常重要的角色,其也是最容易發生損壞的部件之一,若因無及時察覺缺陷的存在,導致機器強制停機檢修,損失的成本將不可小覷。本論文致力於設計一套針對軸承狀態實時監測之嵌入式系統及互動式人機介面,利用「微機電」感測器具有大量生產、低成本、可模組化、高度整合等特性,搭配STM微控制器,模擬可編程之智慧感測器模組,且將邊際運算應用其上。藉由本論文所設計之軸承狀態監測流程、及微控制器與人機介面之撰寫,讓此嵌入式系統能夠針對軸承狀態實時監控,並自主判斷軸承是否異常,且在軸承異常時由人機介面警示使用者,並呈現詳細的軸承狀態分析。最後利用自製缺陷軸承及旋轉電機,驗證此系統在軸承狀態實時監控、狀態分析及減少資料傳輸量上皆有良好的表現。
英文摘要 Under the vigorous industrial internet of things (IoT) and big data cloud, a method of data processing named “Edge-Computing” has developed. As the name suggests, the method processes the data in the equipment’s side by the edge resources. It can not only help us doing data preprocessing but making some preliminary judgment timely without transmitting data to the terminal. The edge computing is beneficial for solving the considerable data transfer problems, congestion in bandwidth caused by too many IoT transmission devices, and extended response time. Bearings play a significant role in the operation of rotating electrical machines, and they are also one of the most easily damaged parts. If the machine is forced to shut down due to undetected defects, the cost of the loss will not be unexpected. This thesis dedicates to designing the embedded systems and interactive human-machine interfaces for real-time monitoring of bearing conditions. By using MEMS(Micro-Electro-Mechanical-System) sensors, which has the characteristics of mass production, low cost, modularization, and high integration, and STM microcontrollers to simulate programmable smart sensor modules, and apply edge-computing on it. Thereby, the bearing condition monitoring process designed and the writing of the microcontroller and the human-machine interface in this paper. The embedded system can monitor the bearing status in real-time and independently determine whether the bearing is abnormal. Besides, the human-machine interface will alert the user and present a detailed analysis of the bearing condition when the bearing is abnormal. Finally, we verify that the system has an excellent performance in real-time bearing monitoring, condition analysis, and data transmission reduction by the self-made defective bearings and rotating motor.
論文目次 摘 要 I
Extended Abstract II
誌謝 XII
目錄 XIII
表目錄 XVI
圖目錄 XVII
第一章 緒論 1
1-1 研究背景 1
1-2 國內外文獻回顧 2
1-3 研究動機與目的 5
1-4 論文架構 6
第二章 MEMS智慧感測器模組介紹 7
2-1 前言 7
2-2 MEMS振動感測器介紹 7
2-2-1 MEMS感測器種類介紹 8
2-2-2 電容式加速度計原理 9
2-3 ADXL-355之規格與頻率響應 12
2-3-1 ADXL-355之規格 13
2-3-2 ADXL-355之頻率響應 14
2-4 控制板之程式編程與流程 16
2-4-1 韌體初始化設定 16
2-4-2 傳輸資料形式之設計 17
2-4-3 韌體之邏輯設計及流程圖 18
2-5 感測器模組封裝 22
第三章 嵌入式系統及人機介面設計 23
3-1 前言 23
3-2 系統架構與設計理念 23
3-3 人機介面設計與功能介紹 25
3-3-1 串口連接及資料設定窗口 26
3-3-2 特徵模式窗口 26
3-3-3 測量模式窗口-實時資料 26
3-3-4 測量模式窗口-時頻域分析 27
3-4 人機介面之程式編寫流程圖 29
第四章 軸承缺陷檢測原理及方法 33
4-1 前言 33
4-2 軸承缺陷檢測方法及流程 33
4-3 軸承基本介紹缺陷特徵頻率推導 34
4-3-1 軸承基本介紹 34
4-3-2 缺陷頻率推導概念 35
4-3-3 軸承各部件頻率 37
4-3-4 總結 39
4-4 高頻包絡解調法介紹 40
4-4-1 高頻包絡解調法 40
4-4-2 包絡線與希爾伯特法 43
4-5 適用於軸承狀態檢測之時域特徵種類介紹 44
4-5-1 有量綱時域特徵 45
4-5-2 無量綱時域特徵 46
4-5-3 參數之敏感度及穩定性比較 47
第五章 實驗架構及結果分析 48
5-1 實驗目的 48
5-2 實驗架構 49
5-2-1 實驗平台架設 49
5-2-2 軸承缺陷種類及特徵頻率計算 50
5-3 實驗結果與討論 52
5-3-1 嵌入式系統之功能驗證 52
5-3-2 時域統計分析結果 54
5-3-3 頻域分析結果 65
5-3-4 結果討論 67
第六章 結論與未來展望 69
6-1 結論 69
6-2 未來展望 69
參考文獻 71

參考文獻 [1] K. Ashton, “That Internet of Things Thing. RFID Journal (2009),” URL: http://www. rfidjournal. com/articles/view, vol. 4986, June ,2009.
[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and Challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-646, June, 2016.
[3] W. Shi and S. Dustdar, “The Promise of Edge Computing,” Computer, vol. 49, no. 5, pp. 78-81, May, 2016.
[4] M. Satyanarayanan, “The Emergence of Edge Computing,” Computer, vol. 50, no. 1, pp. 30-39, Jan, 2017.
[5] S. Sukhmani, M. Sadeghi, M. Erol-Kantarci, and A. E. Saddik, “Edge Caching and Computing in 5G for Mobile AR/VR and Tactile Internet,” IEEE MultiMedia, vol. 26, no. 1, pp. 21-30, Nov., 2019.
[6] 「雲端平台新架構-智慧邊緣運算崛起」,工業技術研究院 Journal of Information and Communication Technology,5月,2018.
[7] N. Dahad, “Let’s Talk Edge Intelligence,” DESIGNLINES AI & BIG DATA DESIGNLINE, 02.19, 2020.
[8] K. Kaur, S. Garg, G. S. Aujla, N. Kumar, J. J. P. C. Rodrigues, and M. Guizani, “Edge Computing in the Industrial Internet of Things Environment: Software-Defined-Networks-Based Edge-Cloud Interplay,” IEEE Communications Magazine, vol. 56, no. 2, pp. 44-51, Feb.,2018.
[9] M. O. Ozcan, F. Odaci, and I. Ari, “Remote Debugging for Containerized Applications in Edge Computing Environments,” in 2019 IEEE International Conference on Edge Computing (EDGE), July, 2019, pp. 30-32.
[10] K. Fan, Q. Pan, J. Wang, T. Liu, H. Li, and Y. Yang, “Cross-Domain Based Data Sharing Scheme in Cooperative Edge Computing,” in 2018 IEEE International Conference on Edge Computing (EDGE), July, 2018, pp. 87-92.
[11] E. Oyekanlu, “Predictive edge computing for time series of industrial IoT and large scale critical infrastructure based on open-source software analytic of big data,” in 2017 IEEE International Conference on Big Data (Big Data), Dec., 2017, pp. 1663-1669.
[12] X. Wei et al., “MVR: An Architecture for Computation Offloading in Mobile Edge Computing,” in 2017 IEEE International Conference on Edge Computing (EDGE), June, 2017, pp. 232-235.
[13] “ADcmXL3021 DataSheet,” ANALOG DEVICES, Inc.
[14] T. Brand, “Demands on Sensors for Future Servicing: Smart Sensors for Condition Monitoring,” ANALOG DEVICES TECHNICAL ARTICLE.
[15] G. Qian, S. Lu, D. Pan, H. Tang, Y. Liu, and Q. Wang, “Edge Computing: A Promising Framework for Real-Time Fault Diagnosis and Dynamic Control of Rotating Machines Using Multi-Sensor Data,” IEEE Sensors Journal, vol. 19, no. 11, pp. 4211-4220, Feb., 2019.
[16] H. Liu, Y. Wang, F. Li, X. Wang, C. Liu, and M. G. Pecht, “Perceptual Vibration Hashing by Sub-Band Coding: An Edge Computing Method for Condition Monitoring,” IEEE Access, vol. 7, pp. 129644-129658, Sept., 2019.
[17] A. Chen, F. Liu, and S. Wang, “Data Reduction for real-time bridge vibration data on Edge,” in 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA), October, 2019, pp. 602-603.
[18] G. Jia, G. Han, H. Rao, and L. Shu, “Edge Computing-Based Intelligent Manhole Cover Management System for Smart Cities,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1648-1656, Dec., 2018.
[19] Q. Liu, X. Liu, and G. Chen, “Study on feature extraction of high speed precision electric machine vibration signal,” in 2010 International Conference on Image Analysis and Signal Processing, April, 2010, pp. 466-469.
[20] J. Gao, X. Meng, and Y. Sun, “Signal extraction and fault identification of steam turbine vibration,” in 2014 IEEE 5th International Conference on Software Engineering and Service Science, June, 2014, pp. 481-483.
[21] J. Zhou et al., “The Research and Application of Vibration Monitoring Theory for Wind Turbine Generator,” in 2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control, Sept., 2013, pp. 366-369.
[22] J. Wang, Y. Peng, and W. Qiao, “Current-Aided Order Tracking of Vibration Signals for Bearing Fault Diagnosis of Direct-Drive Wind Turbines,” IEEE Transactions on Industrial Electronics, vol. 63, no. 10, pp. 6336-6346, May, 2016.
[23] 朱效賢,「包絡譜分析於軸承故障診斷之探討暨工程應用」,中央大學機械工程學系學位論文, 頁碼:1-97,7月,2005.
[24] S. A. McInerny and Y. Dai, “Basic vibration signal processing for bearing fault detection,” IEEE Transactions on education, vol. 46, no. 1, pp. 149-156, Feb., 2003.
[25] 蔡中銘,「高頻解調分析法於風力發電機齒輪箱故障診斷應用」,南臺科技大學機械工程系碩士班碩士學位論文,7月,2018.
[26] T. Karacay and N. Akturk, “Experimental diagnostics of ball bearings using statistical and spectral methods,” Tribology International, vol. 42, no. 6, pp. 836-843, June, 2009.
[27] S. Patidar and P. K. Soni, “An overview on vibration analysis techniques for the diagnosis of rolling element bearing faults,” International Journal of Engineering Trends and Technology (IJETT), vol. 4, no. 5, pp. 1804-1809, May, 2013.
[28] R. Heng and M. J. M. Nor, “Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition,” Applied Acoustics, vol. 53, no. 1-3, pp. 211-226, 1998.
[29] 胡婧、楊曙年,「基於 BP 神經網路的滾動轴承故障诊断研究」,機械與電,2006卷,4期,頁碼:9-11,5月,2006.
[30] N. Tandon and A. Choudhury, “An analytical model for the prediction of the vibration response of rolling element bearings due to a localized defect,” Journal of sound and vibration, vol. 205, no. 3, pp. 275-292, August, 1997.
[31] 鄭允睿,「應用時頻轉換振動訊號分析於軸承異常監視之研究」,中興大學機械工程學系所學位論文,7月,2015.
[32] J. Wang, W. Qiao, and L. Qu, “Wind turbine bearing fault diagnosis based on sparse representation of condition monitoring signals,” in 2017 IEEE Energy Conversion Congress and Exposition (ECCE), April, 2017, pp. 3696-3702.
[33] P. Nivesrangsan and D. Jantarajirojkul, “Bearing fault monitoring by comparison with main bearing frequency components using vibration signal,” in 2018 5th International Conference on Business and Industrial Research (ICBIR), May, 2018, pp. 292-296.
[34] 張凱麟、曾國鈞、陳建樺,「可攜式速度感測系統設計與製作」,逢甲大學自動控制系專題論文,7月,2008.
[35] 王聖涵、張匡儀、黃宇中,「壓電型與MEMS加速規之振動量測技術」, Taiwan Machinery Monthly,頁碼:20-26,,3月,2017.
[36] M. Benmessaoud and M. M. Nasreddine, “Optimization of MEMS capacitive accelerometer,” Microsystem Technologies, vol. 19, no. 5, pp. 713-720, May, 2013.
[37] T. Sethuramalingam and A. Vimalajuliet, “Design of MEMS based capacitive accelerometer,” in 2010 International Conference on Mechanical and Electrical Technology, Sept., 2010: IEEE, pp. 565-568.
[38] M. Andrejašic, “Mems accelerometers,” in University of Ljubljana. Faculty for mathematics and physics, Department of physics, Seminar, March, 2008.
[39] “ADXL355/ADXL354 DataSheet,” ANALOG DEVICES, Inc.
[40] “EVAL-ADXL354/EVAL-ADXL355 User Guide,” ANALOG DEVICES, Inc.
[41] H. J. Landau, “Sampling, data transmission, and the Nyquist rate,” Proceedings of the IEEE, vol. 55, no. 10, pp. 1701-1706, Octo, 1967.
[42] 「示波器運作原理: 頻寬/取樣率/Nyquist Theorem」,NATIONAL INSTRUTMENTS技術文章,3月,2019.
[43] Q. Qingwen, H. Xiaoqing, L. Xiao, and L. Meng, “Characteristic analysis of journal bearing under thin film lubrication—Layered Viscosity Model,” in 2008 IEEE International Conference on Automation and Logistics, Sept., 2008, pp. 2874-2877.
[44] 劉瑞弘、沈毓泰,「風力發電系統自我故障診斷研究」,行政院原子能委員會委託研究計畫研究報告,3-12月,2017.
[45] 馬波、魏强、徐春林、江志農,「基於 Hilbert 變換的包絡分析及其在滾動軸承故障診斷中的應用」,北京化工大學學報 (自然科學版),31卷,6期,頁碼: 95-97,2004.
[46] “STM32F405xx / STM32F407xx DataSheet”, STMicroelectronics,Inc.
[47] 蔡文龍、歐志信、張傑瑞、何叡,「Visual C# 2017 基礎必修課」,基峰資訊出版,6月,2017.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw