進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2807202013085800
論文名稱(中文) 微量氟離子摻雜的高效能三閘極氮化銦鋁/氮化鎵之高介電常數金氧半高電子遷移率電晶體
論文名稱(英文) High Performance Tri-Gate InAlN/GaN High-K MOSHEMTs with Light Fluorine Dopants
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 108
學期 2
出版年 109
研究生(中文) 方翰陞
研究生(英文) Han-Sheng Fang
學號 Q16084058
學位類別 碩士
語文別 英文
論文頁數 68頁
口試委員 指導教授-許渭州
口試委員-王水進
口試委員-吳昌崙
口試委員-林育賢
口試委員-李景松
口試委員-蘇炎坤
中文關鍵字 增強式  三閘極  氮化銦鋁/氮化鎵  高功函數  高電子遷移率電晶體  高介電常數  蕭特基汲極延伸  氟離子摻雜 
英文關鍵字 Enhancement-Mode  Tri-gate  InAlN/GaN  High work function  High Electron Mobility Transistor (HEMT)  High-k dielectric  Schottky drain extension  Fluorine ion doping 
學科別分類
中文摘要 在本論文中,我們證實了微量氟摻雜的高性能三閘極InAlN / GaN 高介電常數 金氧半高電子移動率晶體電晶體。接下來,我們將分為三個主要方面來討論本論文所提出的元件。
首先,該元件是具有高功函數金屬和微量氟離子摻雜的三閘極納米線結構,從而實現了增強模式器件。 以上三種技術的結合,不僅可以通過三閘極結構放大耗盡二維電子氣的效應,而且還可以通過三閘極結構以及高功函數閘極金屬,最小化氟離子的摻雜。
為了進一步提高閘極的控制能力,我們使用具有高介電常數雙層氧化層的三閘極結構。高介電常數雙層氧化層具有高電介質,可以增強三閘極的控制能力,並進一步提高元件的性能。此外,超高的電場控制力,可以抑制氟離子在高溫下所產生的熱穩定性的問題,使元件在高溫下仍保持高可靠且穩定的特性。
此外,我們使用蕭特基汲極延伸結構,其功能類似於汲極場板,可以有效地分佈汲極電場並增加崩潰電壓。 另外,因為蕭特基延伸所使用的金屬是較低功函數的金屬,所以使用該結構可以有效地增加崩潰電壓並且保持不錯的電阻。
在這項工作中,使用二次離子質譜(SIMS)以確認氟離子的深度分佈。接下來,為了研究雙氧化物層的化學元素組成,表面特性和厚度,進行了一些材料分析,例如X射線繞射(XRD),X射線光電子能譜(XPS),原子力顯微鏡(AFM)和透射電子顯微鏡(TEM)。此外,我們也對汲極金屬進行原子力顯微鏡(AFM)分析,以確認表面粗糙度。該器件的臨界電壓(VTH)為+0.48 V,開/關電流比為1010,次臨界擺幅(SS)為67.3 mV /decade,最大啟動電流(Ion)為810 mA / mm,在1μA/ mm時的擊穿電壓(VBR)為630V。與傳統的平面元件相比,所有性能都得到了顯著改善。
英文摘要 In this work, we demonstrate a high performance tri-gate InAlN/GaN high-K MOSHEMTs with light fluorine dopants. Next, we will divide into three major points to discuss the proposed device.
First, the device is a tri-gate nanowire structure with high work function metal and light fluorine dopants to achieve an enhancement-mode device. The combination of the above three technologies can not only amplify the effect of the depleted two-dimensional electron gas through the structure of the tri-gate, but also through the help of tri-gate and high work function metal gate, the total amount of fluorine ions can be minimized.
In order to further improve the control ability of the gate, we use a tri-gate structure with high-k dielectric dual oxide layers. The high-k dielectric dual oxide layers have a high dielectric, which can enhance the control ability of the tri-gate and further improve the performance of the device. In addition, the strong electric field control ability can suppress the problem of thermal stability of fluorine ions at high temperature, so that the device remains highly reliable and stable at high temperature.
Moreover, we use the Schottky drain extension structure, whose function is like a drain field plate, which can effectively distribute the drain electric field and increase the breakdown voltage. In addition, the breakdown voltage is effectively improved while the on-resistance doesn’t degrade due to Schottky drain extension with a low work function metal.
In this work, Secondary ion mass spectroscopy (SIMS) was measured to confirm the depth distribution of fluorine ions. Next, in order to study the chemical element composition, surface characteristics and thickness of the dual oxide layers, some material analyses were carried out, such as x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and transmission electron microscopy (TEM). Moreover, we also conducted an atomic force microscope (AFM) analysis of the drain metal to confirm the surface roughness. The device has a threshold voltage (VTH) of +0.48 V, an on/off current ratio of 1010, a sub-threshold swing (SS) of 67.3 mV/ten times, and an on-state current (Ion) of 810 mA/mm, at The breakdown voltage (VBR) at 1μA/mm is 630 V. Compared with traditional planars devices, all performances have been significantly improved.
論文目次 摘要 i
Abstract iii
誌謝 v
Content vii
Table Captions ix
Figure Captions x
Chapter 1 Introduction 1
1-1 GaN and GaN-based HEMT 1
1-1-1 GaN-based HEMT 2
1-1-2 InAlN/GaN Heterostructure 3
1-2 Tri-Gate Nanowire Structure 3
1-3 High Work-Function Metal 4
1-4 Light Fluorine dopants 4
1-5 High Dielectric Constant Dual Oxide layers 5
1-6 Schottky Extension Technology 6
1-7 Organization 7
Chapter 2 Device Structure and Fabrication 9
2-1 Device Structure 9
2-2 Fabrication 9
2-2-1 Pre-Cleaning 9
2-2-2 Mesa Isolation 10
2-2-3 Source/Drain Ohmic Contact 11
2-2-4 Fluorine ion doping 12
2-2-5 Drain Schottky Contact 13
2-2-6 Gate dielectric(Al2O3/TiO2) Deposition by USPD and ALD 14
2-2-7 Gate Electrode Deposition 15
Chapter 3 Results and Discussion 17
3-1 Physical Analyses 17
3-1-1 Hall measurement 17
3-1-2 Secondary ion mass spectroscopy 18
3-1-3 X-ray Diffraction 19
3-1-4 X-ray Photoelectron Spectroscopy 19
3-1-5 Atomic Force Microscopy 20
3-1-6 Transmission Electron Microscopy 23
3-2 Electric Analyses 24
3-2-1 Capacitance-Voltage Characteristics 26
3-2-2 DC Transfer Characteristics 27
3-2-3 Temperature-Dependent DC Transfer Characteristics 29
3-2-4 Low Frequency Noise Characteristics 31
3-2-5 Three-terminal breakdown characteristics 32
Chapter 4 Conclusion and Future work 33
4-1 Conclusion 33
4-2 Future Work 34
References 36
Figures 42
參考文獻 [1] T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high- voltage unipolar power devices,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 41, NO. 8, 1994.
[2] U. K. Mishra, P. Parikh, and Y.-F. Wu, “AlGaN/GaN HEMTs an overview of device operation and applications,” Proc. IEEE, vol. 90, no. 6, pp. 1022–1031, Jun. 2002.
[3] R. Wang, P. Saunier, S. Member, X. Xing, C. Lian, X. Gao, S. Guo, G. Snider, P. Fay, D. Jena, and H. Xing, “Gate-recessed enhancement-mode InAlN/AlN/GaN HEMTs with 1.9-A/mm drain current density and 800-ms/mm transconductance, ” IEEE Electron Device Lett, vol. 31, no. 12, pp. 1383-1385, Dec. 2010.
[4] L. Y. Su, F. Lee, and J. J. Huang, “Enhancement-mode GaN-based high-electron mobility transistors on the Si substrate with a p-type GaN cap layer,” IEEE Electron Device Lett, vol. 61, no. 2, pp. 460-465, Feb. 2014.
[5] Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, “Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment: from depletion mode to enhancement mode,” IEEE Electron Device Lett, vol. 53, no. 9, pp. 2207-2215, Feb. 2006.
[6] H. Zhou, X. Lou, S. B. Kim, K. D. Chabak, R. G. Gordon, and P. D. Ye, “Enhancement-mode AlGaN/GaN fin-MOSHEMTs on Si substrate with atomic layer epitaxy MgCaO,” IEEE Electron Device Lett, vol. 38, no. 9, pp. 1294-1297, Sep. 2017.
[7] J. Kuzmik, “Power electronics on InAlN/(In) GaN: prospect for a record performance,” IEEE Electron Device Lett, vol. 22, no. 11, pp. 510–513, Nov. 2001.
[8] Y. P. Huang, W. C. Hsu, H. Y. Liu, and C. S. Lee, “Enhancement-mode tri-gate nanowire InAlN/GaN MOSHEMT for power applications, ” IEEE Electron Device Lett, vol. 40, no. 6, 2019.
[9] D. H. Son, Y. W. Jo, V. Sindhuri, K. S. Im, J. H. Seo, Y. T. Kim, I. M. Kang, S. Cristoloveanu, M. Bawedin, and J. H. Lee, “Effects of sidewall MOS channel on performance of AlGaN/GaN fin-FET,” Microelectron. Eng, vol. 147, pp. 155–158, Nov. 2015.
[10] B. Lu, E. Matioli, and T. Palacios, “Tri-gate normally-off GaN power MISFET,” IEEE Electron Device Lett, vol. 33, no. 3, pp. 360–362, Mar. 2012.
[11] K. Ohi, J. T. Asubar, K. Nishiguchi, and T. Hashizume, “Current stability in multi-mesa-channel AlGaN/GaN HEMTs,” IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 60, no. 10, pp. 2997–3004, Oct. 2013.
[12] K. Ohi and T. Hashizume, “Reduction of current collapse in multimesa- channel AlGaN/GaN HEMTs,” Phys. Stat. Sol. C, vol. 9, nos. 3–4, pp. 898–902, 2012.
[13] S. Liu, Y. Cai, G. Gu, J. Wang, C. Zeng, W. Shi, Z. Feng, H. Qin, Z. Cheng, C. Chen, and B. Zhang, “Enhancement-mode operation of nanochannel array (NCA) AlGaN/GaN HEMTs,” IEEE Electron Device Lett, vol. 33, no. 3, pp. 354–356, Mar. 2012.
[14] L. Nela, M. Zhu, S. Member, J. Ma, and E. Matioli, and U. I. Chung, “High-performance nanowire-based e-mode power GaN MOSHEMTs with large workfunction gate metal,” IEEE Electron Device Lett, vol. 40, no. 3, pp. 439–442, 2019.
[15] T. Tani, “Analysis of work functions of noble metals in ambient atmosphere in commemoration of journal award,” J. Soc. Photographic Sci. Technol. Jpn., vol. 78, no. 1, pp. 16–22, 2015.
[16] Y. He, M. Mi, C. Wang, X. Zheng, M. Zhang, H. Zhang, J. Wu, L. Yang, P. Zhang, X. Ma, and Y. Hao, “Enhancement-mode AlGaN/GaN Nanowire Channel High Electron Mobility Transistor With Fluorine Plasma Treatment by ICP,” IEEE Electron Device Lett, vol. 38, no. 10, pp. 1421–1424, 2017.
[17] Y. He, M. Mi, C. Wang, X. Zheng, M. Zhang, H. Zhang, J. Wu, L. Yang, P. Zhang, X. Ma, Member, IEEE, and Y. Hao, “Improvement of the Off-State Breakdown Voltage With Fluorine Ion Implantation in AlGaN/GaN HEMTs,” IEEE Electron Device Lett, vol. 58, no. 2, pp. 460–465, 2011.
[18] Z. Zhang, K. Fu, X. Deng, X. Zhang, Y. Fan, S. Sun, L. Song, Z. Xing, W. Huang, G. Yu, Y. Cai, and B. Zhang, “Normally Off AlGaN/GaN MIS-High-Electron Mobility Transistors Fabricated by Using Low Pressure Chemical Vapor Deposition Si3N4 Gate Dielectric and Standard Fluorine Ion Implantation, ” IEEE Electron Device Lett, vol. 36, no. 11, pp. 1128–1131, 2015.
[19] B. Luo, J. W. Johnson, J. Kim, R. M. Mehandru, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, A. G. Baca, R. D. Briggs, R. J. Shul, C. Monier, and J. Han, “Influence of MgO and Sc2O3 passivation on AlGaN/GaN high-electron-mobility transistors,” Appl. Phys. Lett, Vol. 80, No. 9, 4 Mar. 2002.
[20] S. Sugiura, S. Kishimoto, T. Mizutani, M. Kuroda, T. Ueda, and T. Tanaka, “Normally-off AlGaN/GaN MOSHFETs with HfO2 gate oxide,” phys. stat. sol. (c), No. 6. 2008.
[21] S. Yagi, M. Shimizu, H. Okumura, H. Ohashi, Y. Yano1, and N. Akutsu, “High breakdown voltage AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistor with TiO2/SiN gate insulator,” Jpn. J. Appl. Phys., vol. 46, no. 4B. 2007.
[22] B. Y. Chou, H. Y. Liu, W. C. Hsu, C. S. Lee, Y. S. Wu, W. C. Sun, S. Y. Wei, and S. M. Yu, “Al2O3-passivated AlGaN/GaN HEMTs by using non-vacuum ultrasonic spray pyrolysis deposition technique,” IEEE Electron Device Lett, vol. 35, no. 9, pp. 903–905, Sep. 2014.
[23] Y. Dora, “Effect of ohmic contacts on buffer leakage of GaN transistors,” IEEE Electron Device Lett, vol. 27, no. 7, pp. 529–531, Jul. 2006.
[24] Y. Dora, A. Chakraborty, S. Heikman, L. McCarthy, S. Keller, S. P. DenBaars, and U. K. Mishra, “Effect of ohmic contacts on buffer leakage of GaN transistors,” IEEE Electron Device Lett, vol. 27, no. 7, pp. 529–531, Jul. 2006.
[25] B. Lu, E. L. Piner, and T. Palacios, “Schottky-drain technology for AlGaN/GaN high-electron mobility transistors,” IEEE Electron Device Lett, vol. 31, no. 4, pp. 302–304, Apr. 2010.
[26] M. Hou, G. Xie, and K. Sheng, “Improved device performance in AlGaN/GaN HEMT by forming ohmic contact with laser annealing,” IEEE Electron Device Lett, vol. 39, no. 8, pp. 1137–1140, Aug. 2018.
[27] Y. W. Lian, Y. S. Lin, H. C. Lu, Y. C. Huang, and S. S. H. Hsu, “AlGaN/GaN HEMTs on silicon with hybrid Schottky–ohmic drain for high breakdown voltage and low leakage current,” IEEE Electron Device Lett, vol. 33, no. 7, pp. 973–975, Jul. 2012.
[28] Y. W. Lian, Y. S. Lin, H. C. Lu, Y. C. Huang, and S. S. H. Hsu, “Drain e-field manipulation in AlGaN/GaN HEMTs by Schottky extension technology,” IEEE Electron Device Lett, vol. 62, no. 2, pp. 519–524,Feb. 2015.
[29] Y. W. Lian, Y. S. Lin, H. C. Lu, Y. C. Huang, and S. S. H. Hsu, “AlGaN/GaN HEMTs on silicon with hybrid Schottky-ohmic drain for RF applications, ” IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 63, no. 11, pp. 4218–4225, Nov. 2016.
[30] K. W. Kim, S. D. Jung, D. S. Kim, H. S. Kang, K. S. Im, J. J. Oh, J. B. Ha, J. K. Shin, and J. H. Lee, “Effects of TMAH treatment on device performance of normally off Al2O3/GaN MOSFET,” IEEE Electron Device Lett, vol. 32, no. 10, pp. 1376–1378, Oct. 2011.
[31] E. Hall, “On a new action of the magnet on electric currents,” American Journal of Mathematics., vol. 2, no. 3, pp. 287–292, 1879.
[32] R. F. K. Herzog and F. P. Viehböck, “Ion source for mass spectrography,” Physical Review Journals Archive., vol. 76, iss. 6, pp. 855-856, 1949.
[33] G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic force mircoscope,” Phys. Rev. Lett., vol. 56, no. 9, pp. 930-933, 1986.
[34] R. E, “The early development of electron lenses and electron microscopy,” Microsc Acta Suppl., Suppl 5,1‐140, 1980.
[35] E. H. Nicollian, J. R. Brews, “MOS (metal oxide semiconductor) physics and technology,” New York: Wiley., 1982.
[36] S. J. Chang, J. G. Hwu, “Comprehensive study on negative capacitance effect observed in MOS(n) capacitors with ultrathin gate oxides,” IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 58, no. 3, pp. 684-690, 2011.
[37] T. Tamura, J. Kotani, S. Kasai, and T. Hashizume, “Nearly temperature-independent saturation drain current in a multi-mesachannel AlGaN/GaN high electron mobility transistor,” Appl. Phys. Express, vol. 1, Feb. 2008.
[38] F. N. Hooge, T. G. Kleinpenning, and L. K. J. Vandamme, “Experiment studies on 1/f noise,” Rep. Prog. Phys., vol. 44, no. 5, pp. 479-532, 1981.
[39] J. Sikula, M. Levinshtein, “Advanced experimental methods for noise research in nanoscale electronics devices,” Springer Science., 2005.
[40] M. Zhu, “High performance tri-gate GaN power MOSHEMTs on silicon substrate, ” IEEE Electron Device Lett, vol. 38, no. 3, pp. 367-370, 2017.
[41] J. Ma and E. Matioli, “Slanted tri-gates for high-voltage GaN power devices,” IEEE Electron Device Lett, vol. 38, no. 9, Sep 2017.
[42] B. Lu, Piner, E. L. Piner, T. Palacios, “Schottky-Drain Technology for AlGaN/GaN high-electron mobility transistors,” IEEE Electron Device Letters, vol. 31, no. 4, pp. 302-304, Apr 2010.
[43] E. B. Treidel, R. Lossy, J. Wurfl, G. Trankle, “AlGaN/GaN HEMT with Integrated Recessed Schottky-Drain Protection Diode,” IEEE Electron Device Letters, vol. 30, no. 9, pp. 901-903, Sep 2009.
[44] E. Matioli, B. Lu, and T. Palacios, “Ultralow leakage current AlGaN/GaN Schottky diodes with 3-D anode structure,” IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 60, no. 10, pp. 3365–3370, Oct. 2013.
[45] T. Wang, J. Ma, E. Matioli, “1100 V AlGaN/GaN MOSHEMTs with integrated tri-anode freewheeling diodes,” IEEE Electron Device Lett, vol. 39, no. 7, pp. 1038-1041, Jul 2018.
[46] C. Zhou, W. Chen, E. L. Piner, and K. J. Chen, “Schottky-ohmic drain AlGaN/GaN normally off HEMT with reverse drain blocking capability, ” IEEE Electron Device Lett, vol. 31, no. 7, pp. 668-670, Jul 2010.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw