進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2807202011322500
論文名稱(中文) 基於鍶摻雜二氧化錫薄膜電晶體之研究
論文名稱(英文) A study of Strontium-Doped Tin Dioxide-Based Thin Film Transistors
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 108
學期 2
出版年 109
研究生(中文) 葉俊佑
研究生(英文) Chun-Yu Yeh
學號 Q16074150
學位類別 碩士
語文別 英文
論文頁數 94頁
口試委員 指導教授-許渭州
共同指導教授-劉漢胤
口試委員-王水進
口試委員-周榮泉
口試委員-林育賢
口試委員-李景松
中文關鍵字 二氧化錫摻雜鍶  超音波噴塗熱裂解法  上閘極結構  氧空缺  介面  負閘極照光偏壓測試 
英文關鍵字 SnO2:Sr  Ultrasonic Spray Pyrolysis Deposition  top-gate TFTs  oxygen vacancies  interface  negative bias illumination stress test 
學科別分類
中文摘要 本論文以超音波噴塗熱裂解法製備上閘極二氧化錫摻雜鍶薄膜電晶體。論文中探討了包含使用超音波噴塗熱裂解沉積法在較高溫中噴塗二氧化錫薄膜減少氧空缺形成之優勢、摻雜鍶之後薄膜氧空缺含量減少和晶粒大小減少的原因和對元件造成之影響,以及上閘極結構設計之原因還有未來應用發展之潛力。本篇論文中,首先以下閘極結構製程較快速的優點快速得到實驗參數,再來也探討了在主動層上沉積鈍化層後對元件在空氣中穩定性改善的影響,最後藉由新的光罩製造出上閘極結構的薄膜電晶體元件,其元件轉換特性可以達到開關電流比 3.42×108、次臨界擺幅 120.08mV/dec、臨界電壓 -0.30V、場效電子遷移率 43.12cm2/Vs和負閘極偏壓照光下臨界電壓偏移-0.25V等優秀表現。
超音波噴塗熱裂解沉積法可以在較高溫度(>400℃)的環境下沉積二氧化錫薄膜,這可以使薄膜中的氧空缺比例大幅減小,此外,摻雜鍶這種與氧有著緊密鍵結的鹼土族金屬也能稍微地抑制氧空缺的形成,這可以使二氧化錫原本過高的載子濃度降低,使通道在關狀態更容易空乏,進而提升元件的特性。再者,摻雜鍶之後薄膜的晶粒大小降低,可以減少經歷邊界造成的散射和提升通道與氧化層之間的介面品質,加強元件的穩定性。最後,上閘極元件的結構,能使主動層有著可以經過退火處理的優勢,以提升薄膜品質或得到不同種類的晶相。在這些改動後,臨界偏壓、場效電子遷移率、次臨界擺幅的表現都有顯著提升,在遲滯和負閘極偏壓照光測試等方面也都有不錯的表現。
本實驗成功以超音波噴塗熱裂解沉積法製備上閘極二氧化錫摻雜鍶薄膜電晶體,此方法沉積出來的二氧化錫薄膜在市場上有相當大的優勢,因為較高的薄膜品質和較低的製程成本和其非真空的沉積環境。在鍶的摻雜後也改善了薄膜的品質進一步提升元件的特性。在元件方面,擁有高電子遷移率、高開關電流比、及高穩定性的優點,使其在下一世代大面積顯示器產業中極具潛力,也可望在未來市場中被發掘且應用。
英文摘要 In this study, the strontium doped tin dioxide (SnO2:Sr) thin film transistors were fabricated by ultrasonic spray pyrolysis deposition (USPD) successfully. According to the investigation, we found the advantages of this work, including USPD method in depositing SnO2 thin film in order to reduce the formation of oxygen vacancies, the strontium doping in the SnO2 caused the decrease of oxygen vacancies and the grain size of the thin film, and the advantages of the TFTs with top-gate structure. In this study, bottom-gate devices were fabricated to optimize the deposition rate of the active layer and dielectric layer by USPD. In addition, the bottom-gate devices with passivation layer were fabricated to observe the improvement of the devices stability in air. Moreover, the top-gate devices were fabricated to improve the electrical characteristics with Ion/Ioff of 3.42×108, subthreshold swing (S.S) of 120.08 mV/dec, threshold voltage (Vth) of -0.30V, field effect mobility (μFE) of 43.12 cm2/V-s, and Vth shift of -0.25V under negative bias illumination stress (NBIS).
USPD can deposit SnO2 thin film at higher temperature (> 400℃). It makes the concentration of oxygen vacancies decrease significantly in the thin film. In addition, the strontium doping into the SnO2 thin film can slightly suppress the formation of the oxygen vacancies as well because it has tighter bonding with oxygen. It reduces the excess charge carriers of the SnO2 thin films, and makes the channel be depleted easily in off-state. Besides, the grain size of the SnO2 thin film decreased after the doping of strontium. It reduces the scattering causing by the grain boundary and improves the interface quality between the channel and dielectric layer. Furthermore, the annealing process is available to the top-gate structure without concerning the diffusion between each layer of the device. It can improve the thin film quality or obtain different crystal phase. After the optimization above, the electrical characteristics including threshold voltage, field effect mobility and subthreshold swing were improved significantly, the Vth shift of the hysteresis and NBIS is relatively low as well.
In this study, we successfully fabricated SnO2:Sr TFTs with top-gate structure by USPD method. The thin films deposited by this method are highly competitive in the market due to its low fabrication cost and non-vacuum environment. The performance of the device was improved after doping strontium into the SnO2 thin film. In Addition, the SnO2:Sr TFTs is a promising material with high electron mobility, high Ion/Ioff and high stability, which has great potential for the next generation of large-area panel industry applications. It is expected to be applied to the display market in future.
論文目次 摘要 i
Abstract iii
誌謝 v
Content ix
Table Captions xi
Figure Captions xii
Chapter 1 Introduction 1
1-1 Background and Motivation of Research 1
1-2 Ultrasonic Spray Pyrolysis Deposition 6
1-3 Material Property of Tin Dioxide 7
1-4 Organization 10
Chapter 2 Material Growth and Devices Fabrication 11
2-1 Device Structure and Fabrication 11
2-1-1 Pre-Cleaning 11
2-1-2 Deposition of the Al2O3 Buffer Layer 12
2-1-3 Deposition of the SnO2:Sr Active Layer 12
2-1-4 Fabrication of Source and Drain Electrode 13
2-1-5 Deposition of the Al2O3 Dielectric Layer 14
2-1-6 Fabrication of Gate Electrode 14
Chapter 3 Results and Discussion 19
3-1 Material Analysis 19
3-1-1 Scanning Electron Microscopy 19
3-1-2 Atomic Force Microscopy 22
3-1-3 Grazing Incident X-ray Diffraction 25
3-1-4 X-ray Photoelectron Spectroscopy 28
3-1-5 Photoluminescence 34
3-1-6 Ellipsometry 37
3-1-7 Hall Measurement 40
3-1-8 Transmission Electron Microscopy 42
3-1-9 Energy-dispersive X-ray spectroscopy 44
3-2 Optimization 46
3-2-1 Strontium Doping 48
3-2-2 Deposition Rate of USPD 52
3-2-3 Different Thicknesses of Active Layer 55
3-2-4 Different Thickness of Dielectric Layer 57
3-2-5 Different Source and Drain Electrodes 59
3-3 DC Electric Characteristics 63
3-3-1 SnO2:Sr TFT (bottom-gate devices) 63
3-3-2 SnO2:Sr TFT (with passivation) 68
3-3-3 SnO2:Sr TFT (top-gate devices) 70
3-4 Stability-Negative Bias Illumination Stress 75
Chapter 4 Conclusion and Future works 79
4-1 Conclusion 79
4-2 Suggestion for Future Works 83
References 85

參考文獻 [1] H. Lee, Y. C. Lin, H. P. D. Shieh, J. Kanicki, “Current-scaling a-Si:H TFT Pixel-electrode circuit for AM-OLEDs: electrical properties and stability,” IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol. 54, No. 9, pp. 2403-2409, September 2007.
[2] A. Yumoto, M. Asano, H. Hasegawa, and M. Sekiya, “Pixel-driving methods for large-sized poly-Si AM-OLED displays,” in Proc. Int. Display Workshop, 2001, pp. 1395–1398.
[3] J. Lee, W. Nam, S. Jung, and M. Han, “A new current scaling pixel circuit for AMOLED,” IEEE Electron Device Lett., vol. 25, no. 5, pp. 280–282, May 2004.
[4] J. Lee, W. Nam, S. Han, and M. Han, “OLED pixel design employing a novel current scaling scheme,” in Proc. SIDDig., pp. 490–493, July 2012.
[5] C. L. Lin and Y. C. Chen, “A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 2, pp. 129–131, February 2007.
[6] A. Nathan, G. R. Chaji, and S. J. Ashtiani, “Driving scheme for a-Si and LTPS AMOLED displays,” J. Display Technol., vol. 1, no. 2, pp. 267–277, December 2005.
[7] N. Choi, H. J. Kang, S. M. Joe, B. G. Park, J. H. Lee, “In reconfigurable cell string having FET and super-steep switching diode operation in 3D NAND flash memory”, 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM), pp. 220-222, July 2018.
[8] H. J. Bang, M. C. Nguyen, D. H. Lee, A. H. T. Nguyen, S. Kang, J. W. Choi, S. Y. Han, R. Choi, “Effect of high pressure hydrogen or deuterium anneal on polysilicon channel field effect transistors,” J. Nanosci. Nanotechnol. Vol. 16, No. 10, pp. 10341-0345, October 2016.
[9] J. Yang, R. Fu, Y. Han, T. Meng and Q. Zhang, “ The stability of tin silicon oxide thin-film transistors with different annealing temperatures, ” Europhys. Lett., Vol. 115, No.2, p. 28006, August 2016.
[10] J. H. Ren, K. W. Li, J. W. Yang, D. Lin, H. Q. Kang, J. J. Shao, R. F. Fu and Q. Zhang, “Solution-processed amorphous gallium-tin oxide thin film for low-voltage, high-performance transistors, ”Sci China Mater., Vol. 62, No. 6, pp. 803-812, June 2019.
[11] J. W. Yang, Z. Yang, T. Meng, Y. B. Han, X.T. Wang, and Q. Zhang “Effects of silicon doping on the performance of tin oxide thin film transistors, ” Phys. Status Solidi A, Vol. 213, No. 4, pp. 1010–1015, November 2015.
[12] J. W. Yang, T. Meng, Z. Yang, C. Cui and Q. Zhang, “Investigation of tungsten doped tin oxide thin film transistors,” Journal of Physics D: Applied Physics, Vol. 48, p. 438108, October 2015.
[13] S. B. Hu, K. K. Lu, H. L. Ning, Z. K. Zheng, H. K. Zhang, Z. Q. Fang, R. H. Yao, M. Xu, L. Wang, L. F. Lan, J. B. Peng, and X. B. Lu, “High mobility amorphous indium-gallium-zinc-oxide thin-film transistor by aluminum oxide passivation layer,” IEEE Electron Device Letters, Vol. 38, No. 7, pp. 879-882, July 2017.
[14] C. L. Lin, W. Y. Chang, C. C. Hung, “Compensating pixel circuit driving AMOLED display with a-IGZO TFTs,” IEEE Electron Device Letters, Vol. 34, No. 9, pp. 1166-1138, September 2013.
[15] J. Sheng, T. H. Hong, H. M. Lee, K. R. Kim, M. Sasase, J. Kim, H. Hosono, J. S. Park, “Amorphous IGAO TFT with high mobility of ~70 cm2/(Vs) via vertical dimension control using PEALD,” ACS Appl. Mater. Interfaces, Vol. 11, No. 43, pp. 40300-40309, October 2019.
[16] H. Ji, A. Y. Hwang, C. K. Lee, P. S. Yun, J. U. Bae, K. S. Park, and J. K. Jeong, “Improvement in field-effect mobility of indium zinc oxide transistor by titanium
metal reaction method,” IEEE Transactions on Electron Devices, Vol. 62, No. 4, pp. 1195-1199, April 2015.
[17] W. Hu and R. L. Peterson, “Molybdenum as a contact material in zinc tin oxide thin film transistors,” Appl. Phys. Lett., Vol. 104, p. 192105, May 2014.
[18] D. Shin, K. S. Jang, C. P. T. Nguyen, H. J. Park, J. S. Kim, Y. K. Kim* and J. S. Yi, “High field-effect mobility amorphous indium-tin-zinc-oxide thin-film transistor using negatively charged aluminium-oxynitride gate dielectrics,” AM-FPD, p. 15, August 2018.
[19] M. Esro, G. Vourlias, C. Somerton, W. I. Milne, and G. Adamopoulos, “High-mobility ZnO thin film transistors based on solution-processed hafnium oxide gate dielectrics,” Adv. Funct. Mater., Vol. 25, pp. 134–141, November 2014.
[20] W. Yu, D. Han, J. C. Dong, Y. Y. Cong, G. D. Cui, Y. Wang, and S. D. Zhang, “AZO thin film transistor performance enhancement by capping an aluminum layer,” IEEE Transactions on Electron Devices, Vol. 64, No. 5, pp. 2228-2232, May 2017.
[21] W. Xu, M. Xu, J. F. Jiang, C. Luan, L. Han, X. J. Feng, “High performance thin film transistors with sputtered In-Al-Zn-O channel snd different source/drain electrodes,” IEEE Transactions on Electron Devices, Vol. 40, No. 2, pp. 47-250, February 2019.
[22] J. H. Jeon, Y. H. Hwang, B. S. Bae, H. L. Kwon, H. J. Kang, “Addition of aluminum to solution processed conductive indium tin oxide thin film for an oxide thin film transistor,” Appl. Phys. Lett. Vol. 96, No. 21, p.212109, May 2010.
[23] J. M. Raulot, C. Domain, J. F. Guillemoles, “Ab initio investigation of potential indium and gallium free chalcopyrite compounds for photovaltaic application,” Journal of Physics and Chemistry of solids, Vol. 66, No. 11, pp. 2019-2023, November 2005.
[24] K.H. Liu,1 T. C. Chang, K. C. Chang, T. M. Tsai, T. Y. Hsieh, M. C. Chen, B. L. Yeh, and W. C. Chou, “Investigation of on-current degradation behavior induced by surface hydrolysis effect under negative gate bias stress in amorphous InGaZnO thin-film transistors,” Appl. Phys. Lett., Vol. 104, No. 10, p. 103501, March 2014.
[25] S. Aikawa, P. Darmawan, K. Yanagisawa, T. Nabatame, Y. Abe, and K. Tsukagoshi, “Thin-film transistors fabricated by low-temperature process based on Ga- and Zn-free amorphous oxide semiconductor,” Appl. Phys. Lett. Vol. 102, p. 102101, March 2013.
[26] M. A. Y. Barakat, M. Shaban and A. M. El Sayed, “Structural, ultrasonic and spectroscopic studies of tin oxide thin films; effect of Ir and (Ni, Ir) double doping, ” Mater. Res. Express, Vol.5, No.6, p. 066407, June 2018.
[27] E. Defresart, J. Darville, J. M. Gilles, “Influence of the surface reconstruction on the work function and surface conductance of (110) SnO2,” Applications of Surface Science, Vol. 11-2, pp. 637-651, July 1982.
[28] G. K. Deyu, D. Munoz-Rojas, L. Rapenne, J. L. Deschanvres, A. Klein, C. Jimenez, D. Bellet, “SnO2 films deposited by ultrasonic spray pyrolysis: influence of Al incorporation on the properties,” Molecules, Vol. 24, No. 15, p. 2797, August 2019.
[29] V. Geraldo, L. V. A. Scalvi, E. A. Morais, C. V. Santilli, S. H. Pulcinelli, “Sb doping effects and oxygen adsorption in SnO2 thin films deposited vis Sol-Gel,” Materials Research, Voi. 6, No. 4, pp. 451-456, January 2003.
[30] Y. Y. Weng, D. Y. Deng, L. C. Zhang, Y. Y. Su and Y. Lv, “A cataluminescence gas sensor based on mesoporous Mg-doped SnO2 structures for detection of gaseous acetone,” Anal. Methods, Vol. 8, pp. 7816-7823, October 2016.
[31] H. A. Klasens and H. Koelmans, “A tin oxide field-effect transistor,” Solid State Electronics, Vol. 7, pp. 701-702, 1964.
[32] J. W. Jang , R. Kitsomboonloha , S. L. Swisher , E. S. Park , H. K. Kang , and V. Subramanian, “Transparent high-performance thin film transistors from solution-processed SnO2 /ZrO2 gel-like precursors,” Adv. Mater., Vol. 25, pp. 1042-1047, November 2012.
[33] J. E. Dominguez, L. Fu, and X. Q. Pan, “Effect of crystal defects on the electrical properties in epitaxial tin dioxide thin films,” Appl. Phys. Lett., Vol. 81, pp. 5168-5170 , October 2002.
[34] J. Sun, A. Lu, L. P. Wang, Y. Hu, and Q. Wan, “High-mobility transparent thin-film
transistors with an Sb-doped SnO2 nanocrystal channel fabricated at room temperature,” Nanotechnology, Vol. 20, p. 335204, July 2009.
[35] A. Chin, C. W. Shih, C. F. Lu ,and W. F. Su, “High mobility SnO2 TFT for display and future IC,” AM-FPD, August 2016.
[36] Y. Porte, R. Maller, H. Faber, H. N. AlShareef, T. D. Anthopoulos, M. A. McLachlan, “Exploring and controlling intrinsic defect formation in SnO2 thin film,” J. Meter. Chem. C, Vol. 4, No. 4, pp. 758-765, 2016.
[37] G. Joshi, J. K. Rajput, L. P. Purohit,“Improved stability of gas sensor by inclusion of Sb in nanostructured SnO2 thin films grown on sodalime,” JOURNAL OF ALLOYS AND COMPOUNDS, Vol. 830, p. 154659, July 2020.
[38] S. M. Ali, J. Muhammad, S. T. Hussain, S. D. Ali, N. U. Rehman, M. H. Aziz, “ Annealing effect on structural, optical and electrical properties of pure and Mg doped tin oxide thin films,” J Mater Sci: Mater Electron, Vol. 24, pp. 4925–4931, September 2013.
[39] A. Ahmed, M. N. Siddique, U. Alam, T. Ali, P. Tripathi, “Improved photocatalytic activity of Sr doped SnO2 nanoparticles: A role of oxygen vacancy,” APPLIED SURFACE SCIENCE, Vol. 643, pp. 976-985, January 2019.
[40] F. I. Shaikh, L. P. Chikhale, I. S. Mulla, S. S. Suryavanshi, “Synthesis and enhanced ethanol sensing performance of nanostructured Sr doped SnO2 thick film sensor,” J Mater Sci: Mater Electron, Vol. 28, No. 4, pp. 3128-3139, February 2017.
[41] S. Haya, O. Brahmia, O. Halimi, M. Sebais, B. Boudine, “Sol-gel synthesis of Sr-doped SnO2 thin films and their photocatalytic properties,” Mater. Res. Express, Vol. 4, No. 10, October 2017.
[42] B. G. Hunashimarad, J. S. Bhat, P. V. Raghavendra,“Effect of strontium doping on characteristics of spray deposited SnO2 thin films,” AIP Conf. Proc., Vol. 2087, p. 0220013, March 2019.
[43] K. K. Bangerm, R. L. Peterson, K. Mori, Y. Yamashita, T. Leedham, H. Sirringhaus, “High performance, low temperature solution-processed barium and strontium doped oxide thin film transistors,” Chem. Mater. , Vol. 26, No. 2, pp. 1195-1203, January 2014.
[44] T. Kamiya, and H. Hosono, “Material characteristics and applications of transparent
amorphous oxide semiconductors,” NPG Asia Mater., Vol. 2, No. 1, pp. 15–22, January 2010.
[45] M. Gebhard, L. Mai, L. Banko, F. Mitschker, C. Hoppe, M. Jaritz, D. Kirchheim, C. Zekorn, T. de los Racos, D. Grochla, “PEALD of SiO2 and Al2O3 thin films on polypropylene: investigations of the film growth at the interface, stress, and gas barrier properties of dyads,” ACS Appl. Mater. Interfaces, Vol. 10, No. 8, pp. 7422-7434, February 2018.
[46] S. M. George, “Atomic layer deposition: an overview,” CHEMICAL REVIEWS, Vol. 110, No. 1, pp. 111-131, January 2010.
[47] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, “High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer,” Appl. Phys. Lett., Vol. 86, p. 013503, Dectember 2004.
[48] K. Nomura1, H. Ohta1, A. Takagi, T. Kamiya, M. Hirano1,and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous
oxide semiconductors,” Nature, Vol. 432, No. 25, pp. 488-492, November 2004.
[49] M. Macalík, M. Sedlaříková, J. Vondrák, J. Mohelníková, “Role of hydrogen peroxide in tin dioxide preparation,” ECS Transactions, Vol. 25, No. 40, pp. 83-87, Octorber 2010.
[50] S. Aghabeygi, Z. Sharifi , N. Molahasani, “Enhanced photocatalytic property of nano-ZrO2-SnO2 NP2 for photodegradation of an AZO dye,” Digest Journal of Nanomaterials and Biostructures, Vol. 12, No. 1, pp. 81-89, January 2017.
[51] M. C. F. Alves, S. C. Souza, M. R. S. Silva, E. C. Paris, S. J. G. Lima, R. M. Gomes, E. Longo, A. G. de Souza, I. M. Garica dos Santos, “Thermal analysis applied in the crystallization study of SrSnO3, ” Journal of Thermal Analysis and Calorimetry, Vol. 97, No. 1, pp. 179-183, July 2009.
[52] G. Huang, L. Duan, G. Dong, D. Zhang, and Y. Qiu, “High-mobility solution-processed tin oxide thin-film transistors with high‑κ alumina dielectric working in enhancement mode,” ACS Appl. Mater. Interfaces, Vol. 6, pp. 20786−20794, November 2014.
[53] P. G. Li, M. Lei, W. H. Tang, X. Guo, X. Wang, “Facile route to straight SnO2 nanowires and their optical properties,” Journal of Alloys and Compounds, Vol. 477, No. 1-2, pp. 515-518, May 2009.
[54] T. Tharsika, A. S. M. A. Haseeb, M. F. M. Sabri, “Photoluminescence studies on spray pyrolysis deposited ZnO-SnO2 mixed thin films,” Advanced Materials Research, Vol. 925, pp. 318-332, April 2014.
[55] A. R. A. A. Sakhta, A. H. Khdro, A. N. Darwisho, “Doped tin oxide thin films prepared by spray pyrolysis method,” American Journal of Nanosciences, Vol. 3, No. 2, pp. 19-23, May 2017.
[56] L. J. Zhang, W. Y. Xu, W. J. Liu, P. J. Cao, S. han, D. L. Zhu, Y. M. Lu, “Structural, chemical, optical, and electrical evolution of solution-processed SnO2 films and their applications in thin-film transistors,” J. Phys. D: Appl. Phys. , Vol. 53, No. 17, p. 175160, April 2020.
[57] J. L. Brousseau, H. Bourque, A. Tessier, R. M. Leblanc, “Electrical properties and topography of SnO2 thin films prepared by reactive sputtering,” Applied Surface Science, Vol. 108, No. 3, pp. 351-358, March 1997.
[58] L. Mai, D. Zanders, E. Subasi, E. Ciftyurek, C. Hoppe, D. Rogalla, W. Gilbert, T. Arcos, K. Schierbaum, G. Grundmeier, C. Bock, A. Devi, “Low-temperature plasma-enhanced atomic layer deposition of tin(IV) oxide from a functionalized alkyi precursor: fabrication evaluation of SnO2-based thin-film transistor devices,” ACS Appl. Mater. Interfaces, Vol. 11, No. 3, pp. 3169-3180, January 2019.
[59] K. K. Banger, R. L. Peterson, K. Mori, Y. Yamashita, T. Leedham, H. Sirringhaus, “High performance, low temperature solution-processed barium and strontium doped oxide thin film transistors, ” Chem. Mater., Vol. 26, pp. 1195-1203, January 2014.
[60] K. H. Ji, J.-I. Kim, H. Y. Jung, S. Y. Park, R. Choi and Y. G. Mo, “Comprehensive studies of the degradation mechanism in amorphous InGaZnO,” Microelectronic Engineering, vol. 88, pp. 1412-1416, July 2011.
[61] K. H. Ji, J.-I. Kim, H. Y. Jung, S. Y. Park, R. Choi, U. K. Kim, C. S. Hwang, D. Lee, H. Hwang and J. K. Jeong, “Effect of high-pressure oxygen annealing on negative bias illumination stress induced,” Applied Physics Letters, Vol. 98, p. 103509, February 2011
[62] J. K. Jeong, “Photo-bias instability of metal oxide tin film transistors for advanced active matrix displays,” Materials Research Society, Vol. 28, No. 16, pp. 2071-2084, August 2013.
[63] W. Y. Lee, S. H. Ha, H. Lee, J. H. Bae, B. Jang, H. J. Kwon, J. Jang, “Densification control as a method of improving the ambient stability of sol-gel processed SnO2 thin-film transistors,” IEEE Electron Device Lett., Vol. 40, No. 6, June 2019.
[64] C. W. Shih, T. J. Yen, A. Chin, C. F. Lu, W. F. Su, “Low-temperature processed tin oxide transistor with ultraviolet irradiation,” IEEE Electron Device Lett., Vol. 40, No. 6, June 2019.
[65] B. Jang, T. Kim, S. Lee, W. Y. Lee, H. Kang, C. S. Cho, J. Jang, “High performance ultrathin SnO2 thin-film transistors by sol-gel method,” IEEE Electron Device Lett., Vol. 39, No. 8, August 2018.
[66] D. M. Priyadarshini, R. Mannam, M. S. R. Rao, N. DasGupta, “Effect of annealing ambient on SnO2 thin film transistors,” Applied Surface Science, Vol. 418, pp. 414-417, October 2017.
[67] K. W. Jo, S. W. Moon, W. J. Cho, “Fabrication of high-performance ultra-thin-body SnO2 thin-film transistors using microwave-irradiation post-deposition annealing,” APPLIED PHYSICS LETTERS, Vol. 106, No. 4, January 2015.
[68] I, Choi, M. J. Kim, N. On, A. Song, K. B. Chung, H. Jeon, J. K. Park, J. K. Jeong, “Achieving high mobility and excellent stability in amorphous In-Ga-Zn-Sn-O thin-film transistors,” IEEE Transactions on Electron Devices, Vol. 17, No. 3, pp. 1014-1020, March 2020.
[69] H. Kim, K. Im, J. Park, T. Khim, H. Hwang, S. Kim, S. Lee, M. Song, P. Choi, J. Song, B. Choi, “The effects of valence band offset on threshold voltage shift in a-InGaZnO TFTs under negative bias illumination stress,” IEEE Electron Device Lett., Vil. 41, No. 5, pp. 737-740, May 2020.
[70] Z. H. Xia, L. Lu, J. P. Li, Z. Q. Feng, S. B. Deng, S. S. Wang, H. S. Kwok, M. Wong “Characteristics of Elevated-Metal Metal-Oxide Thin-Film Transistors Based on Indium-Tin-Zinc Oxide,” IEEE Electron Device Lett., Vol. 38, No. 7. pp. 894-897, July 2017.
[71] M. Chun, M. D. H. Chowdhury, J. Jane, “Semiconductor to metallic transition in bulk accumulated amorphous indium-gallium-zinc-oxide dual gate thin-film transistor,” AIP ADVANCES, Vol. 5, p. 057165, May 2015.
[72] V. R. K. Chaganti, A. Prakash, J. Yue, B. Jalan, S. J. Koester, “Demonstration of a depletion-mode SrSnO3 n-channel MESFET,” IEEE Electron Device Lett., Vol. 39, No. 9, pp. 1381-1384, September 2018.
[73] J. L. Brousseau, H. Bourque, A. Tessier, R. M. Leblanc, “Electrical properties and topography of SnO2 thin films prepared by reactive sputtering,” Applied Surface Science, Vol. 108, No. 3, pp. 351-358, March 19972020

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw