進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2807201820225900
論文名稱(中文) 氧化鋅摻鈷室溫鐵磁性之電子結構及應用於發光二極體
論文名稱(英文) Electron structure of room temperature ferromagnetism in Co doped ZnO and application for LED
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 106
學期 2
出版年 107
研究生(中文) 宋昶毅
研究生(英文) Chang-Yi Sung
學號 L26064022
學位類別 碩士
語文別 中文
論文頁數 84頁
口試委員 指導教授-黃榮俊
口試委員-陳宜君
口試委員-胡裕民
中文關鍵字 稀磁性半導體  室溫鐵磁性  雷射鍍膜沉積系統  射頻濺鍍機  氧化鋅摻鈷  束縛極化子模型  發光二極體  延伸吸收光譜  硬 X-ray 光電子解析能譜儀 
英文關鍵字 dilute magnetic emiconductor  room temperature ferromagnetism  PLD  RF Sputter  CoxZn1-xO  bound magnetic polarons model  LED  EXAFS  HARPES 
學科別分類
中文摘要 磁性半導體的磁性來源來自於磁性原子的直接交互作用,在稀磁性半導體中,磁性原子間的距離較遠,磁性難以來自於原子之間的直接交互作用,於是提出許多模型來解釋磁性的來源,主要的模型多數來自於載子做為媒介的交互作用,有雙交換交互作用(Double exchange)、RKKY 交互作用、束縛極化子模型(Bound Magnetic PolaronModel),然而在氧化鋅摻鈷系統裡面,雙交換交互作用來自於不同價數的原子,電子
會在不同原子間交換,鈷原子跟鋅原子皆為二價陽離子,而RKKY 交互作用存在於高載子濃度系統的半導體當中,以載子做為磁性原子電子的媒介交換磁性原子的訊號,但即使是低載子的氧化鋅摻鈷系統,仍然可以量到鐵磁性,於是束縛極化子模型成為
主要的模型, 認為氧化鋅摻雜過渡金屬的鐵磁性來源,來自於磁性原子的3d 軌域電子跟氧空缺的impurity band 形成混成軌域,也就是氧空缺必須臨近過渡金屬原子,而束縛的電子會將磁性的訊號仍被侷限在一定範圍,本實驗室希望利用硬X-ray 光電子解析能譜儀(Hard X-ray Photoelectron Spectroscopy, HAXPES)直接量測氧化鋅摻鈷的電子結構,證明氧化鋅摻鈷的鐵磁性,來自於鈷磁性原子的3d 軌域電子跟氧空缺的impurity band 形成混成軌域,進而確立這個模型,並推廣到所有金屬氧化物摻雜過渡金屬,同時應用到發光二極體當中,藉由氧化鋅摻鈷薄膜具有磁性和良導電的特性,在不影響電壓的情況下,產生些微磁阻的效應和利用能隙間距不一致產生的位能井,使得注入作用區的電子數目減少,解決載子濃度不平衡和高載子濃度導致的內部量子效益下降問題。
英文摘要 A detailed understanding of the origin of the magnetism in dilute magnetic semiconductor is crucial to the application. We use pulsed laser deposition (PLD) and magnetron sputter to grow CoxZn1-xO thin film . Then, we investigate CoxZn1-xO thin film using hard X-ray angle-resolved photoemission (HARPES) with 6669 eV polarization light which can distinguish electrons come from the different orbit and extended X-ray absorption fine structure (EXAFS) to determine the local structure surrounding cobalt atoms. Using EXAFS to make sure the cobalt atoms are doped in the ZnO system. And then the measurement of the HARPES directly observing Co 3d↑-induced states in valence-band centred about 2.7eV below Fermi level and Co 3d↓-induced states near Fermi lever centred about 0.6eV below hybridizing with impurity band created by oxide vacancy. And confirm the ferromagnetism become stronger as the increasing oxide vacancy. We also use Co0.07Zn0.93O to insert into LED as a quantum wall. Solving the problem of the carrier concentration of n-GaN is larger than p-GaN. There is about 24.6% increasing efficiency after growing 20nm Co0.07Zn0.93O between n-GaN and electrode.

論文目次 摘要 I
Abstract II
誌謝 V
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
  1-1 前言 1
  1-2 自旋電子學發展 1
  1-3 發光二極體發展 3
  1-4 研究動機 5
第二章 相關材料與理論 6
  2-1 氧化鋅簡介 6
  2-2 磁性半導體理論 8
    2-2-1 磁性物質的種類 8
    2-2-2 平均場近似理論(Mean-field approximation theory) 10
  2-3 磁性機制的來源 11
    2-3-1 超交換耦合機制(Superexchange interaction) 12
    2-3-2 雙交換耦合機制(Double exchange) 12
    2-3-3 交互巡迴式鐵磁性 13
    2-3-4 侷限載子式鐵磁性 13
    2-3-5 束縛磁極化子模型(Bound Magnetic Polaron Model) 14
  2-4 發光二極體效率下降理論 16
    2-4-1 歐傑電子複合(Auger recombination) 17
    2-4-2 有效作用區減少(Reduced effective volume)和極化電荷(Polarization charges) 18
    2-4-3 載子非局域化(Carrier delocalization) 19
    2-4-4 電洞注入缺乏(poor hole injection)和載子濃度不平衡(Asymmetry) 20
    2-4-5 電流壅塞(current crowding) 21
    2-4-6 電子穿越(electron overfly)和原子間隙穿隧效應(Defect-assisted tunneling) 22
    2-4-7 載子再結合(radiative recombination saturation) 22
  2-5 發光二極體效率改善方法 23
    2-5-1減少載子濃度 24
    2-5-2 電子侷域改善(Electron confinement improvement) 24
    2-5-3 電洞注入改善(Hole injection improvement) 25
第三章 儀器介紹與實驗步驟 26
  3-1 感應耦合式電漿蝕刻系統(Inductive Couple Plasma Etcher,ICP) 26
  3-2 脈衝雷射鍍膜沉積系統(Pulse Laser deposition, PLD)28
  3-3 磁控濺鍍機(Magnetron Sputter) 30
  3-4 電子束蒸鍍機(Electron beam evaporation) 32
  3-5 超導量子干涉元件 (Superconducting Quantum Interference Device, SQUID) 34
  3-6 硬X-ray光電子解析能譜儀(Hard X-ray Photoelectron
Spectroscopy,HAXPES) 36
  3-7 吸收光譜 40
  3-8 元件製作 42

第四章 結果與討論 47
  4-1 PLD成長不同鈷原子比例氧化鋅薄膜之電子結構 47
  4-2 PLD成長氧化鋅摻鈷薄膜室溫鐵磁性隨氧空缺變化 50
  4-3 Sputter成長氧化鋅摻鈷薄膜電子結構和吸收光譜 54
  4-4 Sputter成長氧化鋅摻鈷薄膜退火過後結構之變化 57
  4-5 Sputter成長氧化鋅摻鈷薄膜室溫鐵磁性和電子結構 64
  4-6 氧化鋅摻鈷薄膜應用於藍光LED增幅效益 70
    4-6-1 透明導電膜(TCL)退火條件 70
    4-6-2 電性和光強度隨純氧化鋅薄膜厚度變化 72
    4-6-3 電性和光強度隨氧化鋅摻鈷薄膜厚度變化 74
    4-6-4 效率提升可能理論 77
第五章 結論 79
參考文獻 80
參考文獻 1. 黃榮俊, 許華書(2007),鈷:氧化鋅(Co:ZnO)稀磁性半導體室溫鐵磁性機制研究.成大研究快訊 第一卷
2. Junsaku Nitta, Tatsushi Akazaki, Hideaki Takayanagi, and Takatomo Enoki
Gate Control of Spin-Orbit Interaction in an InvertedIn0.53Ga0.47As/In0.52Al0.48As Heterostructure,Physics Review Latter, 78,1335(1997)
3. T. Dietl, H. Ohno,F. Matsukura, J. Cibert, D. Ferrand, Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors, SCIENCE,VOL 287 11 ,FEBRUARY(2002),p1019
4. Yuji Matsumoto, Makoto Murakami, Tomoji Shono, Tetsuya Hasegawa, Tomoteru Fukumura, Masashi Kawasaki, Parhat Ahmet, Toyohiro Chikyow, Shin-ya Koshihara, Hideomi Koinuma,Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide, SCIENCE ,VOL 291,p854(2001)
5. Kim, J. Y. et al. Ferromagnetism induced by clustered Co in Co-doped anatase TiO2 thin films , Phys. Rev. Lett. 90, 017401 (2003).
6. Punnoose, A., Seehra, M. S., Park, W. K. & Moodera, J. S. On the room temperature ferromagnetism in Co-doped TiO2 films. , J. Appl. Phys. 93, 7867–7869 (2003).
7. Chambers, Scott .A., Ferromagnetism in doped thin-film oxide and nitride semiconductors and dielectrics., Surface Science Reports, Volume 61, Issue 8, p. 345-381(2006).
8. H.Ohno,A,Shen,F.Matsukura,A.Endo,S.katsumoto,and Y.Iye, Nonmetal-metal-nonmetal transition and large negative magnetoresistance in (Ga, Mn)As/GaAs, App. Phy. Lett. Vol 69 , p636(1996)
9. H.Munekate,H.Ohno,S.vonMolmar,A.Segmuller,L.L.Chang and L.Esaki, Diluted magnetic III-V semiconductors,Phys,Rev,Lett,Vol.63(1989)
10. Royal Swedish Academy of Science,Efficient Blue Light-Emitting Diodes Leading To Bright And Energy-Saving White Sources,(2014)
11. 呂彥星,氧化鋅鎵薄膜成長在氮化鎵發光二極體上之應用,光電工程研究所,2007,國立成功大學
12. J.C.Fan, K.M.Sreekanth, Z.Xie, S.L.Chang, K.V.Rao,p-type ZnO materials: Theory, growth, properties and devices,Process in Material Science,874-985(2013)
13. David Jiles, Introduction to Magnetism and Magnetic Materials, CRC Press,p102(2015)
14. 胡裕民,III-V稀磁性半導體薄膜之研究與發展,物理雙月刊,兩十六卷四期(2004)
15. T. Jungwirth, Interlayer coupling in ferromagnetic semiconductor superlattices et al., Phys. Rev., Vol. B59, p.9818 (1999).
16. T. Dietl, H. Ohno , Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Phys. Rev., Vol. B63, p.195205 (2001)
17. Van An Dinh,Enhancement of TC by a carrier codoping method with size compensation for nitride-based ferromagnetic dilute magnetic semiconductors , Journal of Physics: Condensed Matter,Vol.16 , S5705 (2004)
18. Kazunori Sato and Hiroshi Katayama-Yoshida,Material Design of GaN-Based Ferromagnetic Diluted Magnetic Semiconductors, Japanese Journal of Applied Physics, Vol. 40, p485-p487(2001)
19. K Sato and H Katayama-Yoshida,First principles materials design for semiconductor spintronics, Semicond. Sci. Technol., Vol. 17, p367–376 (2002)
20. Yuji Matsumoto, Makoto Murakami, Tomoji Shono, Tetsuya Hasegawa, Tomoteru Fukumura, Masashi Kawasaki, Parhat Ahmet, Toyohiro Chikyow, Shin-ya Koshihara, Hideomi Koinuma,Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide, SCIENCE ,VOL 291,p854(2001)
21. Kramers, H. A., L'interaction Entre les Atomes Magnétogènes dans un Cristal Paramagnétique, Physica, Volume 1, Issue 1, p. 182-192(1934)
22. P. W. ANDERSON, Antiferromagnetism. Theory of Suyerexchange Interaction, Phys. Rev.,Vol 79,2(1950)
23. Clarence Zener, Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure, Phys. Rev. Vol. 82, p403(1951)
24. P. W. ANDERSON, Consideration on Double Exchange, Phys. Rev.,Vol 100,2(1955)
25. Wilhelm Zwerger,Itinerant Ferromagnetism with Ultracold Atoms, Science,Vol.325(2009)
26. J. M. D. COEY, M. VENKATESAN AND C. B. FITZGERALD, Donor impurity band exchange in dilute ferromagnetic oxides, Nature materials, Vol4,10.1038(2005)
27. Giovanni Verzellesi, Davide Saguatti, Matteo Meneghini, Francesco Bertazzi, Michele Goano, Gaudenzio Meneghesso, and Enrico Zanoni, Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies, Journal of Applied Physics 114, 071101 (2013);
28. D. K. Zakheim, A. S. Pavluchenko, D. A. Bauman, K. A. Bulashevich, O. V. Khokhlev, and S. Y. Karpov, Efficiency droop suppression in InGaN-Based bule LEDs: Experiment and numerical modeling, physics status solidi(a), Vol.209,pp456-460(2012)
29. David S. Meyaard, Guan-Bo Lin, Qifeng Shan, Jaehee Cho, E. Fred Schubert, Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes, Appl. Phys. Lett. Vol.99, 251115 (2011)
30. 楊鴻昌,最敏感的感測元件SQUID及其前瞻性應用, 臺大物理系,物理雙月刊,二十四卷五期(2002)
31. J. Weinena, T.C. Koetheb, C.F. Changa, S. Agrestinia, D. Kasinathana, Y.F. Liaoc,H. Fujiwarab, C. Schüßler-Langeheineb, F. Strigarib, T. Hauprichtb, G. Panaccioned,F. Offie, G. Monacof, S. Huotarif, K.-D. Tsueic, L.H. Tjenga,baMax, Polarization dependent hard X-ray photoemission experiments forsolids: Efficiency and limits for unraveling the orbital character of thevalence band, Journal of Electron Spectroscopy and Related Phenomena , Vol. 198 , p6–p11 (2015)
32. J.J. Rehr and R.C. Albers, Theoretical approaches to X-ray absorption fine structure, Reviews of Modern Physics, Vol. 72, p621-p654 (2000)
33. 詹丁山, 數據分析步驟簡介, X光吸收光譜訓練, p1-p35(2017)
34. Joon Seop Kwak_ and Yongjo Park, InGaN-Based Light-Emitting Diodes with Ni/Au Transparent Contacts Annealed in Di_erent Ambient Gases, Journal of the Korean Physical Society, Vol. 45, No. 4, October 2004, pp. 988_992
35. Tauc. J. , Optical properties and electronic structure of amorphous Ge and Si., Materials Research Bulletin, Vol . 3 ,1968, p37–46
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw