進階搜尋


下載電子全文  
系統識別號 U0026-2807201722495000
論文名稱(中文) 希瓦氏菌鐵還原酶動力學和生物製造奈米金
論文名稱(英文) Biofabrication of gold nanoparticles and the ferric reductase kinetic study in Shewanella
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 吳哲緯
研究生(英文) Jhe-Wei Wu
學號 N36041010
學位類別 碩士
語文別 中文
論文頁數 73頁
口試委員 指導教授-吳意珣
口試委員-胡育誠
口試委員-張嘉修
口試委員-趙雲鵬
口試委員-陳柏庭
中文關鍵字 希瓦氏菌  鐵還原酶  奈米金  休眠細胞 
英文關鍵字 Shewanella  Ferric reductase  gold nanoparticles  resting cell 
學科別分類
中文摘要 希瓦氏菌是一種桿狀的兼性厭氧菌,對於鐵和錳具有極強的還原能力,廣泛應用於生物復育、微生物燃料電池及金屬污水整治中。本研究利用奧奈達希瓦氏菌 (MR-1) 與廈門希瓦氏菌 (SXM),藉由 Ferrozine 法來測試細胞濃度、培養時間和轉速對鐵還原酶活性的影響。結果顯示,鐵還原酶活性隨著細胞濃度上升而升高,但細胞活性在 24小時後或靜置培養條件下均大幅下降,故選擇培養條件在轉速 150 rpm、30oC 培養 12 h 下濃縮至細胞量 3.6 g/L,奧奈達希瓦氏菌 (MR-1) 與廈門希瓦氏菌 (SXM) 的最佳鐵還原酶分別為 79 U/g-DCW 和 110 U/g-DCW。採用 Michaelis–Menten 動力學模型, 計算得出 SXM 之 Vmax 和 km 分別是 114.94 U/g-DCW 與 2.2 mM ,MR-1 則是 86.21 U/g-DCW與 6.33 mM,顯示 SXM 有較大之反應速率和親和力。經由基因工程導入 Mtr 通道蛋白後發現 MtrC 顯著提昇了活性 (141.6 U/g-DCW),為原菌 MR-1 的 1.5 倍 (92.6 U/g-DCW)。
希瓦氏菌已被報導具有生成奈米金的能力,但最佳化與機制的探討仍不清楚。本研究探討 pH、細胞濃度、氯金酸濃度與光照效應等因素來對生成之奈米金的影響。找出最適化條件為 pH 5、2.4 g/L 細胞、300 ppm 氯金酸下光照 24 h,SXM 與 MR-1 所生成奈米金量分別為 108 ppm和 62 ppm, 更首次發現光照效應對奈米金生成的影響。由 SEM 與 Zeta potential的電位分析,我們假設希瓦氏菌奈米化金的反應機制為金離子先吸附在細胞表面上,藉由乳酸鈉提供電子經由希瓦氏菌的電子通道把電子傳遞到細胞表面,並將金酸還原成奈米金。文中最後完成了希瓦氏菌的休眠細胞應用測試,結果顯示放置 25 天之休眠細胞依然具備奈米金生成的能力。
英文摘要 In this study, we used S. oneidensis MR-1 (MR-1) and S. xiamenensis BC01 (SXM), to analyze ferric (Fe) reductase by using the Ferrozine assay to detect the Fe(II) concentration. Finally the optimal Fe reductase were determined with 3.6 g/L of biomass which cultured at 150 rpm, 30oC for 24 h. The best ferric reductase was 110 U/g-DCW and 79 U/g-DCW for SXM and MR-1, respectively. Under estimation of the kinetic parameters of Fe reductase were 114.9 U/g-DCWand 2.2 mM for SXM while 86.2 U/g-DCW and 6.33 mM for MR-1. It means that SXM has higher maximum velocity and affinity than MR-1. The genetic strains harboring of genes of mtrA, mtrC, and mtrCAB showed the highest enzymatic activity of 141.6 U/g-DCW obtained by the mtrC strain, which is 1.53 times of wild strain.
To discover the optimal condition for Au@NPs production from SXM and MR-1 was our purpose. Herein, the pH, biomass, concentration of gold ion, and photo effect are evaluated to optimize Au@NPs production by Shewanella. As a result, the highest biofabrication of Au@NPs was at pH 5 immersed in 300 ppm Au3+ and 50 mM sodium lactate at 2.4 g/L biomass after 24 h under light intensity of 100 µmole photons/m2s, which the yield of 108 ppm for SXM and 59 ppm for MR-1.The supposed mechanism of Au@NPs formation was Shewanella used sodium lactate as electron donor and followed by nucleation on cell membrane. Finally, the resting cells remained their ability for production of Au@NPs after 25 days.
論文目次 摘要 i
Extended Abstract ii
致謝 vi
總目錄 vii
表目錄 x
圖目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究目的與架構 1
第二章 文獻回顧 3
2.1 希瓦氏菌簡介 3
2.1.1 希瓦氏菌簡史 3
2.1.2 奧奈達希瓦氏菌 Shewanella oneidensis MR-1 4
2.1.3 廈門希瓦氏菌 Shewanella xiamenensis 6
2.2 希瓦氏菌特徵行為研究 7
2.2.1 電子傳遞方式 7
2.2.2 希瓦氏菌 Mtr 通道 8
2.2.3 希瓦氏菌鐵還原能力研究 10
2.2.4 希瓦氏菌還原奈米金屬顆粒 11
2.2.5 希瓦氏菌的其他應用 12
第三章 材料與方法 14
3.1 實驗藥品 14
3.2 實驗儀器 15
3.3 實驗材料 17
3.3.1 實驗菌種 17
3.3.2 培養基配方 17
3.3.3 常用溶液配制 17
3.3.4 培養條件 18
3.4 實驗分析方法 19
3.4.1 生長曲線測定 19
3.4.2 休眠細胞 (Resting cells) 製作方法 20
3.4.3 一維蛋白電泳分析 20
3.4.4 掃描電子顯微鏡 (SEM) 分析 21
3.4.5 穿透式電子顯微鏡 (TEM) 分析 22
3.4.6 菌體介面電位 (Zeta potential) 分析 22
3.4.7 感應耦合電漿放射光譜儀 (ICP-OES) 測定 23
3.4.8 鐵還原酶活性分析 23
3.4.9 生物法製造奈米金量測定 23
3.4.10 2,6-DMP過氧化氫酶的酶活測定 24
第四章 結果與討論 25
4.1 希瓦氏菌鐵還原酶動力學研究分析 25
4.1.1 不同培養時間的鐵還原酶 25
4.1.2 不同細胞濃度的鐵還原酶 27
4.1.3不同培養轉速的鐵還原酶值 29
4.1.4 鐵還原酶動力參數分析 30
4.1.5 Mtr 通道蛋白對鐵還原酶的影響 32
4.2 希瓦氏菌生物製造奈米金粒子 34
4.2.1 不同 pH 對奈米金形成的影響 34
4.2.2 金濃度對奈米金製備的影響 37
4.2.3 乳酸鈉對製備奈米金的影響 39
4.2.4 不同菌體濃度對奈米金形成的影響 41
4.2.5 光與溫度對奈米金形成的影響 44
4.3 希瓦氏菌的其他應用 47
4.3.1 希瓦氏菌還原奈米金的假設機制 47
4.3.2 希瓦氏菌還原奈米金的回收 49
4.3.3 休眠細胞 (Resting cells) 生成奈米金測試 51
4.3.4 休眠細胞 (Resting cells) 鐵還原酶測試 52
4.3.5 希瓦氏菌對金銀銅的選擇率測定 52
4.3.6 酶活測定 56
第五章 結論與展望 57
5.1 結論 57
5.2 未來展望 63
第六章 參考文獻 64

表4-1、在不同細胞濃度下SXM和MR-1的鐵還原酶活性 28
表 4-2、添加與未添加 50 mM 乳酸鈉於300 ppm的氯金酸溶液4 h 後之上清金離子濃度比較 40
表5-1、希瓦氏菌鐵還原酶與文獻的比較 61
表5-2、希瓦氏菌還原奈米金與其他菌株的比較 62

圖 1-1、研究架構 2
圖2-1、奧奈達希瓦氏菌 (Shewanella oneidensis MR-1) 奈米導線圖[26] 5
圖2-2、原子力顯微鏡 (AFM) 和利用外膜染色所拍出奧奈達希瓦氏菌 (Shewanella oneidensis MR-1) 生成之奈米導線圖[28] 6
圖2-3、掃描式電子顯微鏡 (SEM) 所拍攝出廈門希瓦氏菌 (Shewanella xiamenensis) 7
圖 2-4、希瓦氏菌電子傳遞方式 (a) 直接接觸傳遞,(b) 電子中介體傳遞,(c) 奈米導線傳遞 8
圖 2-5、希瓦氏菌 MR-1 的電子傳遞機制 [36] 10
圖 2-6、以希瓦氏菌為例的微生物燃料電池組成結構 13
圖3-1、希瓦氏菌 SXM 和 MR-1 乾重和光學密度 (OD600) 的檢量線 19
圖3-2、光學密度 (OD530nm) 對應奈米金濃度 (mg/L) 的檢量線 24
圖 4-1、SXM和MR-1在LB培養基培養下的生長狀況 26
圖 4-2、在不同培養時間下SXM和MR-1的鐵還原酶值 27
圖 4-3、動態分析SXM和MR-1在細胞濃度1.2、2.4、3.6及6.0 g/L下之吸收波長(OD 562 nm) 變化 29
圖 4-4、SXM和MR-1在不同培養轉速下的鐵還原酶值 30
圖 4-5、檸檬酸鐵濃度(S)對SXM和MR-1的鐵還原酶活性(V)影響。由1/V與1/S的關係求取SXM和MR-1的Vmax,Km。 31
圖 4-6、pETSXM2-placI-mtrA、pETSXM2-placI-mtrC、pETSXM2-placI-mtrCAB質體圖譜。 33
圖 4-7、Mtr通道蛋白對鐵還原酶的影響。pETSXM2-placI-mtrA/MR-1、pETSXM2-placI-mtrC/MR-1、pETSXM2-placI-mtrCAB/MR-1的鐵還原酶值 33
圖 4-8、SXM和MR-1不同pH下之 Zeta potential 35
圖4-10、不同pH值對SXM和MR-1在300 ppm的氯金酸溶液所生成的奈米金的影響 37
圖 4-11、SXM 與 MR-1 在不同氯金酸濃度生成奈米金的線性關係 38
圖 4-12、未泡金酸的SXM (a) 和MR-1 (c) 與泡完金酸後之SXM (b) 和MR-1 (d) 38
圖 4-13、SXM 和MR-1浸泡在 (a) 100 ppm 與 (b) 500 ppm氯金酸之 SDS-PAGE 39
圖 4-15、SXM 和 MR-1 在乾重 0.6、1.2、 2.4、 3.6 和6.0 g/L的條件下浸泡 300 ppm 的金酸溶液 24 h 後的奈米金濃度 42
圖 4-17、SXM、MR-1、pETSXM2-placI-mtrC/MR-1、pETSXM2-placI-mtrCAB /MR-1在25oC、光照和37 oC的環境浸泡300 ppm氯金酸24 h 下的奈米金濃度 45
圖 4-18 (a) SXM與 (b) MR-1再浸泡300 ppm 氯金酸 24 h後之TEM分析 46
圖 4-19、SXM、MR-1 在光照的環境浸泡300 ppm 氯金酸24 h 內之變化圖 46
圖 4-20、SXM、MR-1 在 RT (25oC)的環境浸泡 300 ppm 氯金酸 24 h 內之變化圖。 46
圖 4-21、不同細胞量對SXM和MR-1在300 ppm 金酸溶液 24 h 後的 zeta potential 分析 48
圖 4-22、希瓦氏菌將金酸還原成奈米金的假設機制 49
圖 4-23、SEM 分析希瓦氏菌SXM和 MR-1經超聲波震盪前 (a, b) 及後(c, d) 釋放奈米金的結果。 50
圖 4-24、希瓦氏菌還原奈米金後在 200oC 下鍛燒 5 h 的結果 50
圖4-25、希瓦氏菌的休眠細胞 51
圖 4-26、希瓦氏菌休眠細胞放置 5、10、15、20 天後細胞所生成奈米金量的結果 51
圖 4-27、休眠細胞的鐵還原酶測試 52
圖4-28、希瓦氏菌浸泡在 100 ppm 硝酸銀下 0 h 和 12 h 後的掃瞄吸光波長 53
圖4-29、希瓦氏菌浸泡在 100 ppm 硫酸銅下 0 h 和 12 h 後的掃瞄吸光波長 54
圖4-30、SXM (a) 與 MR-1 (a) 在浸泡 100 ppm 硝酸銀 24 h 後之 SEM 與 EDS 分析 55
圖4-31、希瓦氏菌同時浸泡在100 ppm 金酸和 100 ppm 硝酸銀下 0 h 和 24 h 後的掃瞄吸光波長 55
圖 4-32、SXM 和 MR-1 浸泡 300 ppm 的 HAuCl4 和 100 ppm 的 AgNO3 12 h 後的過氧化氫酶活性。SXM及MR-1代表原菌活性,Au及Ag代表金屬離子的活性,SAu、MAu、 Sag、 Mag分別代表加入金及銀的活性影響。 56




參考文獻 [1] H. Liu, R. Ramnarayanan, and B. E. Logan, "Production of electricity during wastewater treatment using a single chamber microbial fuel cell," Environmental science & technology, vol. 38, pp. 2281-2285, 2004.
[2] H. J. Kim, H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim, "A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens," Enzyme and Microbial technology, vol. 30, pp. 145-152, 2002.
[3] G.-C. Gil, I.-S. Chang, B. H. Kim, M. Kim, J.-K. Jang, H. S. Park, et al., "Operational parameters affecting the performannce of a mediator-less microbial fuel cell," Biosensors and Bioelectronics, vol. 18, pp. 327-334, 2003.
[4] J. K. Fredrickson, J. M. Zachara, D. W. Kennedy, C. Liu, M. C. Duff, D. B. Hunter, et al., "Influence of Mn oxides on the reduction of uranium (VI) by the metal-reducing bacterium Shewanella putrefaciens," Geochimica et Cosmochimica Acta, vol. 66, pp. 3247-3262, 2002.
[5] L. Sheng, J. Szymanowski, and J. B. Fein, "The effects of uranium speciation on the rate of U (VI) reduction by Shewanella oneidensis MR-1," Geochimica et Cosmochimica Acta, vol. 75, pp. 3558-3567, 2011.
[6] A. K. Suresh, D. A. Pelletier, W. Wang, M. L. Broich, J. W. Moon, B. Gu, et al., "Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis," Acta Biomaterialia, vol. 7, pp. 2148-52, 2011.
[7] C. K. Ng, K. Sivakumar, X. Liu, M. Madhaiyan, L. Ji, L. Yang, et al., "Influence of outer membrane c-type cytochromes on particle size and activity of extracellular nanoparticles produced by Shewanella oneidensis," Biotechnology and Bioengineering, vol. 110, pp. 1831-7, 2013.
[8] Y. Konishi, K. Ohno, N. Saitoh, T. Nomura, S. Nagamine, H. Hishida, et al., "Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae," Journal of biotechnology, vol. 128, pp. 648-653, 2007.
[9] H. H. Derby HA, "Bacteriology of butter. IV. Bacteriological studies on surface taint butter," Iowa Agric Exp Station Res Bull, pp. 389–416, 1931.
[10] H. Long and B. Hammer, "Distribution of Pseudomonas putrefaciens," Journal of Bacteriology, vol. 41, pp. 100-101, 1941.
[11] L. Baumann, P. Baumann, M. Mandel, and R. D. Allen, "Taxonomy of aerobic marine eubacteria," Journal of bacteriology, vol. 110, pp. 402-429, 1972.
[12] M. MacDonell and R. Colwell, "Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella," Systematic and applied microbiology, vol. 6, pp. 171-182, 1985.
[13] K. Kashefi, J. M. Tor, K. P. Nevin, and D. R. Lovley, "Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea," Applied and Environmental Microbiology, vol. 67, pp. 3275-9, 2001.
[14] C. R. Myers and K. H. Nealson, "Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor," Science, vol. 240, p. 1319, 1988.
[15] J. F. Heidelberg, I. T. Paulsen, K. E. Nelson, E. J. Gaidos, W. C. Nelson, T. D. Read, et al., "Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis," Nature biotechnology, vol. 20, pp. 1118-1123, 2002.
[16] Y. Hong, M. Xu, J. Guo, Z. Xu, X. Chen, and G. Sun, "Respiration and growth of Shewanella decolorationis S12 with an azo compound as the sole electron acceptor," Applied and environmental microbiology, vol. 73, pp. 64-72, 2007.
[17] H. M. Jensen, A. E. Albers, K. R. Malley, Y. Y. Londer, B. E. Cohen, B. A. Helms, et al., "Engineering of a synthetic electron conduit in living cells," Proceedings of the National Academy of Sciences, vol. 107, pp. 19213-8, 2010.
[18] Y. Li, I. S. Ng, X. Zhang, and N. Wang, "Draft Genome Sequence of the Dye-Decolorizing and Nanowire-Producing Bacterium Shewanella xiamenensis BC01," Genome Announcements, vol. 2, 2014.
[19] I. S. Ng, F. Xu, X. Zhang, and C. Ye, "Enzymatic exploration of catalase from a nanoparticle producing and biodecolorizing algae Shewanella xiamenensis BC01," Bioresource Technology, vol. 184, pp. 429-35, 2015.
[20] C. R. Myers and K. H. Nealson, "Respiration-linked proton translocation coupled to anaerobic reduction of manganese (IV) and iron (III) in Shewanella putrefaciens MR-1," Journal of Bacteriology, vol. 172, pp. 6232-6238, 1990.
[21] K. Venkateswaran, D. P. Moser, M. E. Dollhopf, D. P. Lies, D. A. Saffarini, B. J. MacGregor, et al., "Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov," International Journal of Systematic and Evolutionary Microbiology, vol. 49, pp. 705-724, 1999.
[22] K. E. Pitts, P. S. Dobbin, F. Reyes-Ramirez, A. J. Thomson, D. J. Richardson, and H. E. Seward, "Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA: expression in Escherichia coli confers the ability to reduce soluble Fe(III) chelates," Journal of Biological Chemistry, vol. 278, pp. 27758-65, 2003.
[23] D. P. Lies, M. E. Hernandez, A. Kappler, R. E. Mielke, J. A. Gralnick, and D. K. Newman, "Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms," Applied and Environmental Microbiology, vol. 71, pp. 4414-4426, 2005.
[24] M. J. Marshall, A. S. Beliaev, A. C. Dohnalkova, D. W. Kennedy, L. Shi, Z. Wang, et al., "c-Type cytochrome-dependent formation of U (IV) nanoparticles by Shewanella oneidensis," PLOS Biology, vol. 4, p. e268, 2006.
[25] E. Marsili, D. B. Baron, I. D. Shikhare, D. Coursolle, J. A. Gralnick, and D. R. Bond, "Shewanella secretes flavins that mediate extracellular electron transfer," Proceedings of the National Academy of Sciences, vol. 105, pp. 3968-3973, 2008.
[26] Y. A. Gorby, S. Yanina, J. S. McLean, K. M. Rosso, D. Moyles, A. Dohnalkova, et al., "Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms," Proceedings of the National Academy of Sciences, vol. 103, pp. 11358-63, 2006.
[27] M. Y. El-Naggar, G. Wanger, K. M. Leung, T. D . Yuzvinsky, G. Southam, J. Yang, et al., "Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1," Proceedings of the National Academy of Sciences, vol. 107, pp. 18127-31, 2010.
[28] S. Pirbadian, S. E. Barchinger, K. M. Leung, H. S. Byun, Y. Jangir, R. A. Bouhenni, et al., "Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components," Proceedings of the National Academy of Sciences, vol. 111, pp. 12883-8, 2014.
[29] J. Huang, B. Sun, and X. Zhang, "Shewanella xiamenensis sp. nov., isolated from coastal sea sediment," International Journal of Systematic and Evolutionary Microbiology, vol. 60, pp. 1585-9, 2010.
[30] Z. Zong, "Nosocomial peripancreatic infection associated with Shewanella xiamenensis," Journal of medical microbiology, vol. 60, pp. 1387-1390, 2011.
[31] I. S. Ng, T. Chen, R. Lin, X. Zhang, C. Ni, and D. Sun, "Decolorization of textile azo dye and Congo red by an isolated strain of the dissimilatory manganese-reducing bacterium Shewanella xiamenensis BC01," Appl Microbiol Biotechnol, vol. 98, pp. 2297-308, 2014.
[32] T. Chen, Y. Zhou, I. S. Ng, C.-S. Yang, and H.-Y. Wang, "Formation and characterization of extracellular polymeric substance from Shewanella xiamenensis BC01 under calcium stimulation," Journal of the Taiwan Institute of Chemical Engineers, vol. 57, pp. 175-181, 2015.
[33] Y. Zhou and I.-S. Ng, "Explored a cryptic plasmid pSXM33 from Shewanella xiamenensis BC01 and construction as the shuttle vector," Biotechnology and Bioprocess Engineering, vol. 21, pp. 68-78, 2016.
[34] D. R. Lovley, "Electromicrobiology," Annual Review of Microbiology, vol. 66, pp. 391-409, 2012.
[35] H. von Canstein, J. Ogawa, S. Shimizu, and J. R. Lloyd, "Secretion of flavins by Shewanella species and their role in extracellular electron transfer," Applied and Environmental Microbiology, vol. 74, pp. 615-23, 2008.
[36] J. K. Fredrickson, M. F. Romine, A. S. Beliaev, J. M. Auchtung, M. E. Driscoll, T. S. Gardner, et al., "Towards environmental systems biology of Shewanella," Nature Reviews Microbiology, vol. 6, pp. 592-603, 2008.
[37] C. R. Myers and J. M. Myers, "Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron (III), fumarate, and nitrate by Shewanella putrefaciens MR-1," Journal of Bacteriology, vol. 179, pp. 1143-1152, 1997.
[38] B. Schuetz, M. Schicklberger, J. Kuermann, A. M. Spormann, and J. Gescher, "Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1," Applied and Environmental Microbiology, vol. 75, pp. 7789-96, 2009.
[39] D. Coursolle, D. B. Baron, D. R. Bond, and J. A. Gralnick, "The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis," Journal of Bacteriology, vol. 192, pp. 467-74, 2010.
[40] L. Shi, T. C. Squier, J. M. Zachara, and J. K. Fredrickson, "Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes," Molecular Microbiology, vol. 65, pp. 12-20, Jul 2007.
[41] A. S. Beliaev, D. A. Saffarini, J. L. McLaughlin, and D. Hunnicutt, "MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR‐1," Molecular microbiology, vol. 39, pp. 722-730, 2001.
[42] O. Bretschger, A. Obraztsova, C. A. Sturm, I. S. Chang, Y. A. Gorby, S. B. Reed, et al., "Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants," Applied and environmental microbiology, vol. 73, pp. 7003-7012, 2007.
[43] D. R. Lovley, "Dissimilatory Fe (III) and Mn (IV) reduction," Microbiological reviews, vol. 55, pp. 259-287, 1991.
[44] D. Lovley, J. R. Lloyd, and L. E. Macaskie, "Biotechnological application of metal reducing microorganisms," Journal of Applied Microbiology, vol. 53, 2003.
[45] C. R. Myers and J. M. Myers, "Ferric reductase is associated with the membranes of anaerobically grown Shewanella putrefaciens MR-1," FEMS Microbiology Letters, vol. 108, pp. 15-22, 1993.
[46] J. R. Dodson, H. L. Parker, A. Muñoz García, A. Hicken, K. Asemave, T. J. Farmer, et al., "Bio-derived materials as a green route for precious & critical metal recovery and re-use," Green Chemistry, vol. 17, pp. 1951-1965, 2015.
[47] A. Ramesh, H. Hasegawa, W. Sugimoto, T. Maki, and K. Ueda, "Adsorption of gold (III), platinum (IV) and palladium (II) onto glycine modified crosslinked chitosan resin," Bioresource Technology, vol. 99, pp. 3801-3809, 2008.
[48] M. Spitzer and R. Bertazzoli, "Selective electrochemical recovery of gold and silver from cyanide aqueous effluents using titanium and vitreous carbon cathodes," Hydrometallurgy, vol. 74, pp. 233-242, 2004.
[49] Y. N. Mata, E. Torres, M. L. Blazquez, A. Ballester, F. Gonzalez, and J. A. Munoz, "Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus," Journal of Hazardous Materials, vol. 166, pp. 612-8, 2009.
[50] Y.-R. He, Y.-Y. Cheng, W.-K. Wang, and H.-Q. Yu, "A green approach to recover Au(III) in aqueous solution using biologically assembled rGO hydrogels," Chemical Engineering Journal, vol. 270, pp. 476-484, 2015.
[51] H. Bai, Z. Zhang, Y. Guo, and W. Jia, "Biological Synthesis of Size-Controlled Cadmium Sulfide Nanoparticles Using Immobilized Rhodobacter sphaeroides," Nanoscale Research Letters, vol. 4, pp. 717-23, 2009.
[52] L. Shi, K. M. Rosso, T. A. Clarke, D. J. Richardson, J. M. Zachara, and J. K. Fredrickson, "Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella Oneidensis MR-1," Frontiers in Microbiology, vol. 3, p. 50, 2012.
[53] K. H. Nealson, A. Belz, and B. McKee, "Breathing metals as a way of life: geobiology in action," Antonie Van Leeuwenhoek, vol. 81, pp. 215-222, 2002.
[54] S. A. Kumar, Y. A. Peter, and J. L. Nadeau, "Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin," Nanotechnology, vol. 19, p. 495101, 2008.
[55] R. Wu, L. Cui, L. Chen, C. Wang, C. Cao, G. Sheng, et al., "Effects of bio-Au nanoparticles on electrochemical activity of Shewanella oneidensis wild type and DeltaomcA/mtrC mutant," Scientific Reports, vol. 3, p. 3307, 2013.
[56] R. Kuhad, N. Sood, K. Tripathi, A. Singh, and O. Ward, "Developments in microbial methods for the treatment of dye effluents," Advances in applied microbiology, vol. 56, pp. 185-213, 2004.
[57] D. Georgiou and A. Aivasidis, "Decoloration of textile wastewater by means of a fluidized-bed loop reactor and immobilized anaerobic bacteria," Journal of hazardous materials, vol. 135, pp. 372-377, 2006.
[58] A. B. dos Santos, F. J. Cervantes, and J. B. van Lier, "Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology," Bioresource technology, vol. 98, pp. 2369-2385, 2007.
[59] M. Xu, J. Guo, G. Zeng, X. Zhong, and G. Sun, "Decolorization of anthraquinone dye by Shewanella decolorationis S12," Applied microbiology and biotechnology, vol. 71, pp. 246-251, 2006.
[60] H. Liu and B. E. Logan, "Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane," Environmental science & technology, vol. 38, pp. 4040-4046, 2004.
[61] H. P. Bennetto, J. Box, G. M. Delaney, J. Mason, S. D. Roller, J. Stirling, et al., "Redox-mediated electrochemistry of whole microorganisms: from fuel cells to biosensors," Biosensors, TURNER, APF, KARUBE, I., WILSON, GS (Hrsg.) Oxford University Press, Oxford, pp. 291-314, 1987.
[62] B. R. Ringeisen, E. Henderson, P. K. Wu, J. Pietron, R. Ray, B. Little, et al., "High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10," Environmental science & technology, vol. 40, pp. 2629-2634, 2006.
[63] L. L. Stookey, "Ferrozine---a new spectrophotometric reagent for iron," Analytical chemistry, vol. 42, pp. 779-781, 1970.
[64] A. Levskaya, A. A. Chevalier, J. J. Tabor, Z. B. Simpson, L. A. Lavery, M. Levy, et al., "Synthetic biology: Engineering Escherichia coli to see light," Nature, vol. 438, pp. 441-442, 2005.
[65] J. B. McKinlay and J. G. Zeikus, "Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli," Applied and Environmental Microbiology, vol. 70, pp. 3467-74, 2004.
[66] M. E. Hernandez, A. Kappler, and D. K. Newman, "Phenazines and other redox-active antibiotics promote microbial mineral reduction," Applied and environmental microbiology, vol. 70, pp. 921-928, 2004.
[67] K. T. Finneran, C. V. Johnsen, and D. R. Lovley, "Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe (III)," International Journal of Systematic and Evolutionary Microbiology, vol. 53, pp. 669-673, 2003.
[68] N. Zhu, "Biorecovery of gold as nanoparticles and its catalytic activities for p-nitrophenol degradation," Environmental Science and Pollution Research, " Environmental Science and Pollution Research, vol. 23, pp. 7627-7638, 2016
[69] A. Binupriya, M. Sathishkumar, K. Vijayaraghavan, and S.-I. Yun, "Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis," Journal of hazardous materials, vol. 177, pp. 539-545, 2010.
[70] M. Sathishkumar, A. Mahadevan, K. Vijayaraghavan, S. Pavagadhi, and R. Balasubramanian, "Green recovery of gold through biosorption, biocrystallization, and pyro-crystallization," Industrial & Engineering Chemistry Research, vol. 49, pp. 7129-7135, 2010.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-07-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw