
系統識別號 
U00262807201616025800 
論文名稱(中文) 
量子非實在性量度與其在量子資訊上的應用 
論文名稱(英文) 
Quantification of nonrealistic features and applications to quantum information processing 
校院名稱 
成功大學 
系所名稱(中) 
工程科學系 
系所名稱(英) 
Department of Engineering Science 
學年度 
104 
學期 
2 
出版年 
105 
研究生(中文) 
陳建廷 
研究生(英文) 
ChienTing Chen 
學號 
N96034439 
學位類別 
碩士 
語文別 
英文 
論文頁數 
98頁 
口試委員 
指導教授李哲明 召集委員周忠憲 口試委員羅信斌

中文關鍵字 
實在性
量子非實在性
量子資訊處理

英文關鍵字 
Realism
Quantum nonrealistic features
Quantum information processing

學科別分類 

中文摘要 
古典實在性理論無法完全地描述量子狀態，這種量子非實在性已被利用於偵測純然之量子效應，並已被應用於量子資訊處理之中，然而，至今為止還沒有量化量子非實在性的研究方案；本論文先定義一個可被古典實在性理論描述的狀態，並定義一個可使任意狀態轉變成此種狀態的過程，然後以此進一步提出兩種量度來量化量子狀態與過程的量子非實在性，透過這兩種量度，我們整理出任意的量子純態與任意的么正轉換具有最多的量子非實在性，此外，我們研究這兩種量度在量子資訊處理上的應用，例如量測量子通道的量子非實在性以及評估量子邏輯閘的效能，最後，我們亦比較了量子非實在性量度與其他非古典特性的量度，如量子同調性，並指出它們之間的差異性。

英文摘要 
Quantum states are not completely described by the classical theory of realism. Such quantum nonrealistic features provide tools to detect quantum effects and have applications to quantum information processing. There is, however, no scheme for quantifying nonrealistic features. Here we first define a reference state that can be described by the classical realistic theory. A quantum process that changes any states into this reference state is also introduced. We then further propose two measures to quantify the nonrealistic features of quantum state and quantum process. With these two novel quantifiers, we show that any pure states and any unitary transformations are the states and the processes of maximal nonrealistic features, respectively. Furthermore, we also apply these quantifiers to quantum information processing, such as quantifying nonrealistic features of quantum channels and evaluating the performance of quantum gates. Finally, we compare our measures with a quantum coherence quantifier in detail.

論文目次 
中文摘要 I
Abstract II
Acknowledgements III
Table of Contents IV
List of Figures VII
List of Tables VIII
Nomenclature IX
Chapter 1 Introduction 1
1.1 Research background 1
1.2 The motivation for this study 3
1.3 Research purpose 5
1.4 The outline of dissertation 6
Chapter 2 Fundamentals of quantum mechanics for quantum information processing 8
2.1 State space 8
2.2 Evolution 11
2.3 Quantum measurement 12
2.4 Composite systems 14
2.5 The density operator 15
2.6 Quantum noise and quantum operation 22
2.6.1 Quantum operations formalism 22
2.6.2 The superoperator and the operator sum representation 23
2.6.3 Examples of quantum noise and quantum operation 25
2.7 Master equation 29
2.7.1 Markovian evolution 29
2.7.2 The Lindbladian and the master equation 30
2.8 Quantum process tomography 33
2.9 Distance measures 36
Chapter 3 Quantum discord and quantum coherence witness 38
3.1 Quantum discord 38
3.1.1 Mutual information in classical information theory 39
3.1.2 The mutual information in quantum information theory 41
3.1.3 Quantum discord 42
3.2 Quantum coherence witness 47
3.3 Detecting quantum coherence of an open double quantum dot system 49
3.3.1 Open double quantum dot system 50
3.3.2 Discussion 51
Chapter 4 Quantifying nonrealistic features of quantum states and processes 55
4.1 The assumption of underlying objective reality for quantum mechanics 55
4.1.1 Ontic and epistemic views 56
4.1.2 Ontological models 57
4.2 The assumptions of objective reality 59
4.3 Detecting nonrealistic features of quantum states 60
4.4 Quantifying nonrealistic features of quantum states 62
4.4.1 The reality state 62
4.4.2 The quantification of the nonrealistic features of quantum states 63
4.4.3 The state of the least objective reality 65
4.5 Quantifying nonrealistic features of quantum processes 67
4.5.1 The reality process 68
4.5.2 The quantification of the nonrealistic features of a quantum process 69
4.5.3 The process of the least objective reality 70
4.5.4 Detecting nonrealistic features of a quantum noise channel 71
4.6 Evaluating the performance of a quantum gate with quantification of the nonrealistic features of a quantum process 74
4.6.1 Relationship between process fidelity and the process measure of nonrealistic features 75
4.6.2 Application of the relationship between the process measure of nonrealistic features and process fidelity 77
4.7 Comparing nonrealistic features with coherence 86
Chapter 5 Summary and Outlook 90
5.1 Summary 90
5.2 Outlook 91
Reference 94

參考文獻 
[1] H. Kragh, “Quantum Generations: A history of physics in the twentieth century ” Princeton University Press, 2002.
[2] R. P. Feynman, “Simulating physics with computers ” International Journal of Theoretical Physics, vol. 21, pp. 467488, 1982.
[3] C.M. Li, Y.N. Chen, N. Lambert et al., “Certifying singlesystem steering for quantuminformation processing,” Physical Review A, vol. 92, pp. 062310, 2015.
[4] C. H. Bennett, and P. W. Shor, “Quantum information theory,” IEEE Transactions on Information Theory, vol. 44, pp. 27342742, 1998.
[5] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Physical Review Letters, vol. 96, pp. 010401, 2006.
[6] M. Ringbauer, B. Duffus, C. Branciard et al., “Measurements on the reality of the wavefunction,” Nature Physics, vol. 11, pp. 249254, 2015.
[7] M. F. Pusey, J. Barrett, and T. Rudolph, “On the reality of the quantum state,” Nature Physics, vol. 8, pp. 475478, 2012.
[8] N. D. Mermin, “Is the moon there when nobody looks? Reality and the quantum theory,” Physics Today, vol. 38, pp. 3847, 1985.
[9] A. Einstein, B. Podolsky, and N. Rosen, “Can quantumMechanical description of physical reality be considered complete?,” Physical Review, vol. 47, pp. 777780, 1935.
[10] J. S. Bell, “On the einstein podolsky rosen paradox,” Physics, vol. 1, pp. 195200, 1964.
[11] Z. Merali, “What is really real?,” Nature, vol. 521, pp. 278280, 2015.
[12] R. W. Spekkens, “Evidence for the epistemic view of quantum states: A toy theory,” Physical Review A, vol. 75, pp. 032110, 2007.
[13] E. Schrödinger, “Die gegenwärtige situation in der quantenmechanik,” Naturwissenschaften, vol. 23, pp. 823828, 1935.
[14] J. Barrett, E. G. Cavalcanti, R. Lal et al., “No ψepistemic model can fully explain the indistinguishability of quantum states,” Physical Review Letters, vol. 112, pp. 250403, 2014.
[15] C. Branciard, “How ψepistemic models fail at explaining the indistinguishability of quantum states,” Physical Review Letters, vol. 113, pp. 020409, 2014.
[16] M. Leifer, “ψepistemic models are exponentially bad at explaining the distinguishability of quantum states,” Physical Review Letters, vol. 112, pp. 160404, 2014.
[17] E. Schrödinger, “What is Life?,” Cambridge Univ. Press, 1992.
[18] H. Ollivier, and W. H. Zurek, “Quantum discord: A measure of the quantumness of correlations,” Physical Review Letters, vol. 88, pp. 017901, 2001.
[19] R. Horodecki, P. Horodecki, M. Horodecki et al., “Quantum entanglement,” Reviews of Modern Physics, vol. 81, pp. 865942, 2009.
[20] A. Ishizaki, and Y. Tanimura, “Quantum dynamics of system strongly coupled to lowtemperature colored noise bath: reduced hierarchy equations approach,” Journal of the Physical Society of Japan, vol. 74, pp. 31313134, 2005.
[21] A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, vol. 271, pp. 933937, 1996.
[22] E. Collini, C. Y. Wong, K. E. Wilk et al., “Coherently wired lightharvesting in photosynthetic marine algae at ambient temperature,” Nature, vol. 463, pp. 644647, 2010.
[23] G. S. Engel, T. R. Calhoun, E. L. Read et al., “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature, vol. 446, pp. 782786, 2007.
[24] J. YuenZhou, J. J. Krich, M. Mohseni et al., “Quantum state and process tomography of energy transfer systems via ultrafast spectroscopy,” Proceedings of the National Academy of Sciences, vol. 108, pp. 1761517620, 2011.
[25] C.M. Li, N. Lambert, Y.N. Chen et al., “Witnessing quantum coherence: from solidstate to biological systems,” Scientific Reports, vol. 2, pp. 885, 2012.
[26] T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Physical Review Letters, vol. 113, pp. 140401, 2014.
[27] M. A. Nielsen, and I. L. Chuang, “Quantum computation and quantum information,” Cambridge Univ. Press, 2010.
[28] F. Schwabl, “Statistical Mechanics,” SpringerVerlag Berlin Heidelberg, pp. 16, 2002.
[29] E. R. Ziegel, “Standard Probability and Statistics Tables and Formulae,” Technometrics, vol. 43, pp. 249249, 2001.
[30] O. Gühne, and G. Tóth, “Entanglement detection,” Physics Reports, vol. 474, pp. 175, 2009.
[31] A. Barenco, C. H. Bennett, R. Cleve et al., “Elementary gates for quantum computation,” Physical Review A, vol. 52, no. 5, pp. 34573467, 11/01/, 1995.
[32] R. Raussendorf, and H. J. Briegel, “A oneway quantum computer,” Physical Review Letters, vol. 86, pp. 51885191, 2001.
[33] A. M. Childs, E. Farhi, and J. Preskill, “Robustness of adiabatic quantum computation,” Physical Review A, vol. 65, pp. 012322, 2001.
[34] C. H. Bennett, G. Brassard, C. Crépeau et al., “Teleporting an unknown quantum state via dual classical and EinsteinPodolskyRosen channels,” Physical Review Letters, vol. 70, pp. 18951899, 1993.
[35] J. Preskill, “Lecture notes for physics 229: Quantum information and computation,” California Institute of Technology, 1998.
[36] H. J. Carmichael,“Statistical methods in quantum optics, Vol. 2, ” Berlin: Springer, 1999.
[37] V. Vedral, M. B. Plenio, M. A. Rippin et al., “Quantifying entanglement,” Physical Review Letters, vol. 78, pp. 22752279, 1997.
[38] E. T. Jaynes, “Information theory and statistical mechanics,” Physical Review, vol. 106, pp. 620630, 1957.
[39] K. H. Rosen, and K. Krithivasan, “Discrete mathematics and its applications,” McGrawHill New York, 1999.
[40] C. H. Bennett, and D. P. DiVincenzo, “Quantum information and computation,” Nature, vol. 404, pp. 247255, 2000.
[41] H. Azuma, and M. Ban, “Another convex combination of product states for the separable Werner state,” Physical Review A, vol. 73, pp. 032315, 2006.
[42] N. Lambert, C. Emary, Y.N. Chen et al., “Distinguishing quantum and classical transport through nanostructures,” Physical Review Letters, vol. 105, pp. 176801, 2010.
[43] A. Friedman, “Are the quantum world and the real world the same thing?,” http://www.pbs.org/wgbh/nova/blogs/physics/2015/05/quantumwordrealworldthing/.
[44] N. Harrigan, and R. W. Spekkens, “Einstein, incompleteness, and the epistemic view of quantum states,” Foundations of Physics, vol. 40, pp. 125157, 2010.
[45] T. Norsen, “Einstein’s boxes,” American Journal of Physics, vol. 73, pp. 164176, 2005.
[46] M. S. Byrd, and N. Khaneja, “Characterization of the positivity of the density matrix in terms of the coherence vector representation,” Physical Review A, vol. 68, pp. 062322, 2003.
[47] J. L. O'Brien, G. J. Pryde, A. Gilchrist et al., “Quantum process tomography of a controlledNOT gate,” Physical Review Letters, vol. 93, pp. 080502, 2004.
[48] C. Monroe, D. M. Meekhof, B. E. King et al., “Demonstration of a fundamental quantum logic gate,” Physical Review Letters, vol. 75, pp. 47144717, 1995.
[49] “IBM Quantum Experience,” http://www.research.ibm.com/quantum/.
[50] A. Fedorov, L. Steffen, M. Baur et al., “Implementation of a Toffoli gate with superconducting circuits,” Nature, vol. 481, pp. 170172, 2012.
[51] T. Monz, K. Kim, W. Hänsel et al., “Realization of the quantum Toffoli gate with trapped ions,” Physical Review Letters, vol. 102, pp. 040501, 2009.
[52] F. G. S. L. Brandão, and G. Gour, “Reversible framework for quantum resource theories,” Physical Review Letters, vol. 115, pp. 070503, 2015.
[53] X. Xing, “Protecting qubit–qutrit entanglement from amplitude damping decoherence via weak measurement and reversal,” Physica Scripta, vol. 89, pp. 065102, 2014.
[54] A. Winter, and D. Yang, “Operational resource theory of coherence,” Physical Review Letters, vol. 116, pp. 120404, 2016.

論文全文使用權限 
同意授權校內瀏覽/列印電子全文服務，於20210728起公開。同意授權校外瀏覽/列印電子全文服務，於20210728起公開。 


