進階搜尋


 
系統識別號 U0026-2807201615010100
論文名稱(中文) 鋯摻雜之鈦酸鋇介電陶瓷的阻抗分析
論文名稱(英文) Impedance Spectroscopy Analysis of Zr-Doped Barium Titanate Dielectrics
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 張漢廷
研究生(英文) Han-Ting Chang
學號 N46031122
學位類別 碩士
語文別 中文
論文頁數 79頁
口試委員 指導教授-黃啟原
口試委員-吳毓純
口試委員-黃正亮
口試委員-李文熙
中文關鍵字 鈦酸鋇  電阻衰退試驗  顯微結構  阻抗分析   
英文關鍵字 Barium titanate  impedance spectroscopy  resistance degradation  zirconium 
學科別分類
中文摘要 本研究根據過去以鈦酸鋇為介電陶瓷材料所做的研究及資料整合後發現,前人文獻提到在高工作電壓的材料選擇上,可以以化合物之能隙做為考量,其發現以鋯酸鹽為主的化合物之能隙較高,此外另一篇文獻也發現在鈦酸鋇中B-site位置以鋯來取代其還原焓會比未添加之鈦酸鋇還要來的高,綜合上述可以推測摻雜鋯之鈦酸鋇應具有較佳之可靠度,而影響可靠度之因素主要為晶界,阻抗分析能夠解析晶界與晶粒之行為,因此本研究將探討摻雜鋯之鈦酸鋇之阻抗行為,藉以驗證可靠度。
本研究利用固態反應法製備鋯摻雜之鈦酸鋇粉末,形成Ba(ZrxTi1-x)O3 (x= 0、0.02、0.04, 0.06, 0.08) 之固溶系統,從XRD圖譜進行PDF卡號之繞射峰比對,可以推斷當x = 0-0.02時屬於正方晶相,當x = 0.04-0.08 時,屬於斜方晶相。 為了模仿積層陶瓷電容器之燒結條件,樣品於還原氣氛 (1% H2/N2) 下燒結,經燒結後可得到次微米級粒徑,符合實際MLCC需求,平均大小為 0.62 μm 。阻抗圖譜以三組等效RC電路擬合,再藉由Curie-Weiss law 行為進行分析,可印證擬合之等效電路之合理性。利用阻抗可以得到晶粒與晶界之導電率、晶界的空間電荷層厚度和晶界能障高度,發現以上之結果,隨著鋯的添加沒有呈現有趨勢的變化,且大小差異不大,最後以衰退試驗驗證阻抗之行為,發現結果跟導電度趨勢相同,導電度較高可靠度會較差,導電度較低可靠度較好,但是以鋯的添加來觀察,並沒有明顯的趨勢在,此結果認為是因為細晶粒及空間電荷層厚度相似所造成的,也就是說晶界兩旁因為電中性平衡布滿了空間電荷層,因晶粒大小太小,導致晶粒大部分都被空間電荷佔據,因此使得晶粒跟晶界的電阻大小差異不大,阻抗分析難以有效地分辨出晶界及晶粒所貢獻的部分,而造成晶粒及晶界導電度差異不大和晶界能障差異不明顯。
英文摘要 In this study, a series of Ba(ZrxTi1-x)O3 powders were prepared for x = 0, 0.02, 0.04, 0.06, and 0.08 compositions using a solid-state reaction. It can be seen that the substitution of Ti4+ (0.61 Å) by 4-8% Zr4+ (0.72 Å) changes the room temperature crystal structure from tetragonal to orthorhombic. The Ba(ZrxTi1-x)O3 ceramics were sintered under a reducing atmosphere in a moisturized gas mixture of N2 with 1 vol% of H2, and the average grain size ranged from 0.58 to 0.66 μm. Electrical characteristics, such as electrical resistance at high temperature (160°C) and impedance spectroscopy were measured. The impedance data were fitted by using an equivalent circuit model with three RC elements, which consists of the grain, grain boundary and electrode. From the impedance analysis and resistance degradation, the behavior of resistance degradation is observed to be more improved with the decrease of both grain and grain boundary conductivities. However, the incorporation of Zr has an insignificant effect on the space charge layer thickness and the grain boundary potential barrier height. The insignificant or irregular variation in impedance spectroscopy and resistance degradation might be attributed by the similarity between the space charge layer thickness and the grain size because of the fine grain in this study, which means the resistance value of grain and grain boundary is not very different and the two RC responses of grain and grain boundary could not be separated easily.
論文目次 摘要 I
致謝 II
表目錄 XVI
圖目錄 XVII
第一章 緒論 1
1-1 前言 1
1-2研究目的 2
第二章 文獻回顧與理論基礎 3
2-1 鈦酸鋇介電材料 3
2-1-1 鈦酸鋇之晶體結構及性質 3
2-1-2 鋇鈦比對於鈦酸鋇之影響 8
2-2 Zr4+的添加對鈦酸鋇之影響 13
2-3 鈦酸鋇半導化現象及改善 23
2-4 電性分析 24
2-4-1 交流阻抗分析 24
2-4-2 Electric Modulus分析 33
第三章 實驗方法及步驟 36
3-1 粉末製備及分析 37
3-1-1 起始原料 37
3-1-2 鋯摻雜鈦酸鋇 Ba(ZrxTi1-x)O3 粉末製備37
3-1-3 粉末之熱差/熱重分析 38
3-1-4 X光繞射儀 38
3-2 陶瓷體製備及分析 38
3-2-1 陶瓷體製備 38
3-2-2 陶瓷體密度量測 39
3-2-3 掃描式電子顯微鏡與微結構觀察及分析 39
3-3 電性量測 40
3-3-1 陶瓷體電性量測樣品準備 40
3-3-2 交流阻抗分析量測 40
第四章 結果與討論 41
4-1 起始混合粉末之DTA/TG 分析 41
4-2 煅燒粉末分析 43
4-2-1 結晶相分析 43
4-2-2 晶格常數分析 45
4-3 燒結體分析 48
4-3-1 燒結體密度量測 48
4-3-2 顯微結構分析 50
4-4 交流阻抗分析 55
4-4-1 等效電路擬合 55
4-4-2 Curie-Weiss行為分析 62
4-4-3 導電率行為分析 65
4-4-4 空乏層(空間電荷層)分析 68
4-4-5 晶界能障高度分析 70
4-5 高速壽命試驗分析 73
第五章 結論 75
參考文獻 76
參考文獻 1.A. J. Moulson and J. M. Herbert, Electroceramics, Materials Properties, Applications, Chapman & Hall, London, (1990).
2.Soonil Lee, William H. Woodford, and Clive A. Randall “Crystal and defect chemistry influences on band gap trends in alkaline earth perovskites.” Appl. Phys. Lett. 92, 201909, (2008)
3.R.D. Levi, “Solid solution trends that impact electrical design of submicron layers in dielectric capacitors.” Ph.D. Thesis, The Pennsylvania State University, University Park, PA, 2009.
4.K. Kishi, Y. Mizuno, and H. Chazono, “Base-Metal Electrode Multilayer Ceramic Capacitors: Past, Present and Future Perspectives,” Jpn. J. Appl. Phys., 42, 1-15, (2003).
5.B. Jaffe, W. R Cook, H. Jaffe, Piezoelectric Ceramics, Academic Press, London and New York, (1971).
6.H. Bryan and J. Thomoson, “Temperature-Dependent Phase Boundaries for BaTiO3, Ba4Ti13O30 and Ba6Ti17O40,” J. Am. Ceram. Soc., 34, [19], 33-34, (1951).
7.F. Kulesar, “A Microstructure Study of Barium Titanate Ceramics,” J. Am. Ceram. Soc., 39, [13], 13-19, (1959).
8.V. Krasevec, M. Drofenik, and D. Kolar, “Topotaxy between BaTiO3 and Ba6Ti17O40,” J. Am. Ceram. Soc., 70, [8], 193-195, (1987).
9.S. Lee, C. A. Randall, and Z. K. Liu, “Modified Phase Diagram for the Barium Oxide–Titanium Dioxide System for the Ferroelectric Barium Titanate,” J. Am. Ceram. Soc., 90, [8], 2589-2594, (2007).
10.Y. H. Hu, M. P. Harmer, and D. M. Smyth, “Solubility of BaO in BaTiO3,” J. Am. Ceram. Soc., 68,[7], 372-76, (1985).
11.J. S. Choi and H. G. Kim, “Influence of Stoichiometry and Impurity on the Sintering Behavior of Barium Titanate Ceramics,” J. Mat. Sci., 27, 1285-1290, (1992).
12.N. M. Hwang, S. H. Yoon, J. H. Lee, and D. Y. Kim, “Effect of the Liquid-Phase Characteristic on the Microstructures and Dielectric Properties of Donor-(Niobium) and Acceptor- (Magnesium) Doped Barium Titanate,” J. Am. Ceram. Soc., 86, [1], 88-92, (2003).
13.J. K. Lee, K. S. Hong, and J. W. Jang, “Roles of Ba/Ti Ratios in the Dielectric Properties of BaTiO3 Ceramics,” J. Am. Ceram. Soc., 84, [9], 2001-2006, (2001).
14.R. K. Sharma, N. H. Chan, and D. M. Smyth, “Solubility of TiO2 in BaTiO3,” J. Am. Ceram. Soc., 64, [8], 448-451, (1981).
15.D. Hennings, R. Janssen, and P. J. Reynen, “Control of Liquid Enhanced Discontinuous Grain Growth in Barium Titanate,” J. Am. Ceram. Soc., 70, [1], 23-27, (1987).
16.D. Hennings and A. Schnell, “Diffuse Ferroelectric Phase Transitions in Ba(Ti l-y Zr y )03 Ceramics,” J. Am. Ceram. Soc., 65, 11, (1982)
17.P. S. Dobal, A. Dixit, and R. S. Katiyar, “Micro-Raman scattering and dielectric investigations of phase transition behavior in the BaTiO3-BaZrO3 system,” J. Appl. Phys., 89, [12], 8085-8091, (2001).
18.Zixiong Sun, Yongping Pu, Zijing Dong,Yao Hu, Xiaoyan Liu, Peikui Wang, “Effect of Zr4+ content on the TC range and dielectric and ferroelectric properties of BaZrxTi1-xO3 ceramics prepared by microwave sintering,” Ceramics Internationl, 40, 3589–3594, (2014)
19.Wei Cai, Chunlin Fua, Jiacheng Gaob, Huaqiang Cheng, ”Effects of grain size on domain structure and ferroelectric properties of barium zirconate titanate ceramics,” Journal of Alloys and Compounds, 480, 870–873, (2009)
20.O.Saburi, “Properties of Semiconductive Barium Titanates” J. Phys. Soc. Jan, 14, [9], 1159-1174, (1959)
21.J. E. Bauerle, “Study of solid electrolyte polarization by a. complex admittance method” J. Phys. Chem. Solids, 30, 265, (1969)
22.D. C. Sinclair, and A. R. West, “Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance,” J. Appl. Phys, 66, [8], 15, (1989)
23.S. Song and F. Placido, “The influence of phase probability distributions on impedance spectroscopy,” J. Stat. Mech : Theor. Exp., 10018, (2004)
24.J. T. S. Irvine, D. C. Sinclair, and A. R. West, “Electroceramics: Characterization by Impedance Spectroscopy,” Adv. Mater., 2, [3], 132-138, (1990).
25.X. Guo and J. Maier, “Grain Boundary Blocking Effect in Zirconia: A Schottky Barrier Analysis,” J. Electrochem. Soc., 148, [3], E121-6, (2001).
26.J. R. Macdonald, Impedance Spectroscopy, John Wiley & Sons, New York (1987).
27.V. Paunovic, V. V. Mitic, Z. Prijic, and Lj. Zivkovic, “Microstructure and dielectric properties of Dy/Mn doped BaTiO3 ceramics,” Creamics International., 40, [3], 4277-4284, (2014).
28.N. Hirose, and A. R. West, “Impedance Spectroscopy of Undoped BaTiO3 Ceramics,” J. Am. Ceram. Soc., 79, [6], 1633-1641, (1996).
29.J. Fleig, S. Rodwald, and J. Maier, “Microcontact Impedance Measurements of Individual Highly Resistive Grain Boundaries: General Aspects and Application to Acceptor-Doped SrTiO3,” J. Appl. Phys., 87, [5], 2372-81, (2000).
30.X. Guo, J. Fleig, and J. Maier, “Separation of Electronic and Ionic Contributions to the Grain Boundary Conductivity in Acceptor-Doped SrTiO3,” J. Electrochem. Soc., 148, [9], J50-3, (2001).
31.M. Vollmann and R. Waser, “Grain Boundary Defect Chemistry of Acceptor-Doped Titanates: Space Charge Layer Width,” J. Am. Ceram. Soc., 77 [1] 235-43 (1994).
32.Rainer Hagenbeck and Rainer Waser, “Influence of temperature and interface charge on the grain boundary conductivity in acceptor doped SrTiO3 ceramics” J. Appl. Phys, 83, 4, (1998)
33.Yu-Ju Kao, Che-Yi Su, Christian Pithan, Detlev F. Hennings, Chi-Yuen Huang, and Rainer Waser, “Hydroxyl Defect Effect on Reoxidation of Sc-doped (Ba,Ca)(Ti,Zr)O3 Fired in Reducing Atmospheres” J. Am. Ceram. Soc., 1–7 (2016)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw