進階搜尋


下載電子全文  
系統識別號 U0026-2807201612174100
論文名稱(中文) 木質複合板之調濕性能測試與評估
論文名稱(英文) Experiments and Evaluation of Moisture Buffering Performance of Wood Composite Board
校院名稱 成功大學
系所名稱(中) 建築學系
系所名稱(英) Department of Architecture
學年度 104
學期 2
出版年 105
研究生(中文) 曾偉菱
研究生(英文) Wei-Ling Tseng
學號 N76034435
學位類別 碩士
語文別 中文
論文頁數 58頁
口試委員 口試委員-林芳銘
口試委員-林子平
口試委員-葉育君
指導教授-蔡耀賢
中文關鍵字 調濕建材  塗裝  調濕性能  木質複合板 
英文關鍵字 Moisture Buffering Material  Coating  Moisture Buffer Value  Wood composite Board 
學科別分類
中文摘要 近年來,人們越來越著重室內環境品質,室內濕氣的問題也逐漸受到重視。台灣各地年平均相對濕度在75%以上,屬於高溫多濕的環境。控制室內高濕問題,可利用建材具有的多孔隙,對室內環境濕氣進行吸濕與放濕,這種能有效緩和室內相對濕度的建材,被稱為調濕建材。調濕建材被視為一種有效被動式(passive control)的濕氣控制手法,可以提升室內空氣品質及居住者的健康。國內已有研究指出,使用調濕建材搭配適當的通風換氣,能夠有效的減少相對濕度在70%以上的時間。在調濕建材中,木質建材在室內設計是相當常見的材料,然而許多研究僅針對實木的濕氣緩和效果進行探討。
使用在室內裝修的木質建材中,以木質複合板最為常見,其成本較實木低且廣泛運用於系統家具、木質地板、壁板等室內裝修中。木質複合板的製程受到材料、膠合劑種類、膠合層厚度等等的影響,不確定性的變因較多,因此,國內外對於木質複合板材調濕性能的相關研究較少。本研究主要目的為探討木質複合板之厚度、木質複合板貼覆表面材、木質複合板塗裝後的調濕性能。實驗材料為厚度4.5~18mm之木質合板為基材,搭配無塗裝的竹材、橡木、栓木薄片為表面材;以及厚度18mm合板,搭配以木蠟油塗裝的竹材、橡木、栓木薄片為表面材。依據ISO 24353:2008進行調濕性能實驗,測試其調濕性能,了解影響木質合板調濕性能的因子以及合板塗裝前後的性能差異。
實驗結果發現,表面材料、表面材厚度、塗裝的有無皆為影響材料吸濕性能的主要原因,而基材厚度較不影響材料的調濕性能。表面材料部分,竹材貼覆於厚度4.5~18 mm基材合板上時,吸濕量比貼覆其他表面材料來的好;吸濕量最差則為橡木薄片以及厚度12mm之基材。表面材厚度部分,厚度0.5mm橡木薄片貼覆於厚度4.5~18 mm基材上時,吸濕量比厚度0.2mm橡木薄片都來的高。材料塗裝部分,試材塗裝後的吸放濕比率、吸放濕量皆降低。基材厚度部分,吸濕量並不隨材料的厚度增加而增加。
本研究參考日本建材試驗中心評估基準以及北歐標準進行調濕性能評估。日本建材試驗中心評估結果,發現竹材複合板之等級最佳;吸放濕比率部分,所有試材皆未達到基準規定值70%以上,顯示所有試材放濕性能較差。採用北歐標準評估結果發現無塗裝之材料,厚度4.5、18 mm之合板、竹材複合板、雪花栓木複合板、橡木複合板評估等級,平均等級均為「好」。
實驗結果以斯皮爾曼相關係數及皮爾森相關係數分析,以分析材料各項變因與材料吸放濕量之相關性,結果發現材料之吸放濕量,與表面材厚度以及塗裝有無的相關性最高,其次為表面材種類與基材厚度。
英文摘要 The humidity issue is one of the essential factors regarding the indoor environment quality. According to Central Weather Bureau of Taiwan, the monthly average relative humidity (RH) for the major cities in Taiwan is over 75%. Moisture buffering materials, which are porous building materials and potential for the reduction of RH peaks, can be regarded as a passive design method used to control the indoor relative humidity. Adopting moisture buffering materials would not only promotes the indoor environment quality but also enhances the comfort and health of the inhabitants. The local researches indicate that design strategies along with moisture buffering materials is a effectively method to reduce high RH peaks. And there are more and more researchers dedicated to the study for the wood materials moisture buffering effect.
Wood composite boards, a interior revolutionary materials commonly used in system furniture, wooden floors, walls and interior decoration, is considered as a potential moisture buffering materials due to the availability and lower cost. However, the manufacturing process of wood composite boards is too complicated. Adhesive, film thickness and numerous factors would have influence on the production. Therefore there are only limited researches related to the moisture buffering effect of wood composite boards. This study follows the ISO 24353:2008 standard testing the Moisture Buffering Value(MBV) of three different wood composite boards (thickness:4.5,12,18 mm) with three type of veneer (Bamboo, Oak, Sen) glued on the surface. Wax coating is applied on surface of wood composite boards as a contrast. The testing result indicates that the type, thickness and coating of veneers have significant influence on the moisture buffering capacity of the materials. On the contrast, the thickness of wood composite boards does not play a role in that.
論文目次 摘要 I
誌謝 XII
目錄 XIII
第一章 緒論 1
1-1研究背景 1
1-2研究目的 2
1-3研究範圍 3
1-4研究流程 4
第二章 文獻回顧與理論 5
2-1文獻回顧 5
2-1-1室內濕度與空氣品質 5
2-1-2室內濕度與人體健康 6
2-1-3調濕建材 7
2-1-4木質材料調濕性能 10
2-2相關理論 12
2-2-1調濕建材 12
2-2-2木質材料調濕原理 15
2-2-3調濕建材性能評估 16
第三章 研究方法 19
3-1研究對象 19
3-1-1木質複合材料 19
3-2研究方法與流程 22
3-2-1實驗材料變因設定 22
3-2-2實驗方法 23
第四章 研究結果與討論 30
4-1材料調濕性能數據 30
4-2材料各項變因討論 31
4-2-1不同表面材對調濕性能的影響 31
4-2-2表面材厚度對調濕性能的影響 34
4-2-3 基材厚度對調濕性能的影響 36
4-3材料塗裝對調濕性能的影響 37
4-4調濕性能評估 39
4-4-1 日本建材中心吸放濕量評估 39
4-4-2 北歐標準MBV評估 42
4-4-3 材料吸放濕量比值 44
4-5材料調濕性能相關性 46
第五章 結論與建議 47
5-1 結論 47
5-2 後續研究建議 48
附錄、調濕性能實驗數據 52


參考文獻 1.中央氣象局(2010) ,中央氣象局1981-2010氣象統計資料,取自www.cwb.gov.tw。
2.王松永(1983) ,日本之合板工業,林產工業,2(1):51~64。
3.王松永(2003) ,木質環境材料科學,國立編譯館。
4.王松永(2005) ,木材物理學,國立編譯館。
5.王筱茜(2015) ,評估濕度對不同合板甲醛逸散量之影響,輔仁大學公共衛生學系碩士班碩士論文。
6.吳明隆、涂金堂(2006),SPSS與統計應用分析,五南圖書出版股份有限公司。
7.林坤輝(2005) ,極低濕度環境對作業者健康影響研究,國立高雄第一科技大學環境與安全衛生工程所碩士論文。
8.卓志隆(1992) ,木質環境對溫濕度調節效能之研究,台灣大學森林學研究所博士論文。
9.張慧君(2010) ,室內溫度、濕度與風速對29~60歲人員感知與舒適度之研究-以人員閱讀狀態為例,樹德科技大學建築與環境設計研究所碩士論文。
10.黃巧婷(2015) ,木質建材塗裝對調濕性能之影響,國立成功大學建築研究所碩士論文。
11.經濟部統計處(2011),經濟部工業產品分類,經濟部。
12.經濟部標準檢驗局(2013) ,CNS 451 木材密度試驗法,中華民國國家標準,經濟部。
13.葉民權(2001),優質木質生活環境效益,木材在室內裝潢應用與耐燃法規研習會,42-53。
14.葉育君、蔡耀賢(2014),以黴菌發芽預測模型評估住宅調濕建材之設計策略,建築學報,,No.89, pp.57-74。
15.葉育君(2015),調濕建材應用於住宅室內空間之性能預測與評估,國立成功大學建築研究所博士論文。
16.歐陽順(2008),多孔性廢棄物燒製調濕建材之研究,國立中央大學環境工程研究所碩士論文。
17.蔡耀賢、江哲銘(2009) ,台灣氣候下室內調濕建材之適用性探討,建築學報,第69 期, 35~50。
18.蔡耀賢,江哲銘,鍾松晉(2010),各種調濕建材之性能測試與評估,建築學報,第74期增刊,1~14.。
19.蔡馨億(2013),熱濕氣候下室內常用建材調濕能力與黴菌生長之研究,國立宜蘭大學土木工程學系。
20.羅友伶(2012),室內建材調濕設計簡易計算手法之初探,國立雲林科技大學創意生活設計系碩士班碩士論文。
21.刘奕彪、秦孟昊(2015),多孔调湿材料湿缓冲特性的实验研究,土木建筑与环境工程,第37卷,第五期。
22.大畑敬,河村敬(2012),各種建築材料の基本的吸放湿性能の評価,島根県産業技術センター研究報告,第48号。
23.池田耕一等人(2005) ,シックハウスに関する海外の法規制など,シックハウスを防ぐ最新知識,42-51,丸善株式会社,東京。
24.近藤精一,石川達夫,阿部郁夫(2001),吸着の科学 第二版,丸善,東京。
25.長野克則(2008),調湿材の技術の進展,空気調和衛生工学会,Vol.82 (8):51-56。
26.岡野健,(1978),木材と居住性-八王子試作住宅の調査から,木材工業,33(10):418-423。
27.福水浩史、北村子、横山茂(2005),アロフェン系調湿建材に関する研究―調湿建材の材料設計,環境資源工学,52,128–135。
28.Anthony V. Arundel, Elia M. Sterling, Judith H. Biggin, and Theodor D. Sterling. (1986). Indirect Health Effects of Relative Humidity in Indoor Environments. Environmental Health Perspectives, Vol. 65, pp. 351-361.
29.Avramidis, S. (1997) The Basics of Sorption. International Conference of COST Action E8, Mechanical Performance of Wood and Wood Products. Theme: Wood-Water Relations. Copenhagen, Denmark, June, pp. 16 -17.
30.Collet, F., Chamoin, J., Pretot, S., and Lanos, C. (2013). Comparison of the hygric behaviour of three hemp concretes. Energy and Buildings, 62, pp. 294-303.
31.Davis , RE., McGregorb, GR. and Enfield, KB.(2016).Humidity:A review and primer on atmospheric moisture and human health. Environmental Research, 144, pp. 106–116.
32.Hameury, S. (2005). Moisture buffering capacity of heavy timber structures directly exposed to an indoor climate: a numerical study. Building and environment, 40(10), pp. 1400-1412.
33.Harper, G.J. (1961). Airborne Micro-organism: Survival test with four viruses, The Journal of Hygiene, 59(4), pp. 479-486.
34.Harrison, R. M., Thornton, C. A., Lawrence, R. G., Mark, D., Kinnersley, R. P. and Ayres, J.G.(2002).Personal exposure monitoring of particulate matter, nitrogen dioxide, and carbon monoxide, including susceptible groups.Occup Environ Med, 59, pp. 671–679.
35.Huang, S., Xiong, J. and Zhanga, Y. (2015). The Impact of Relative Humidity on the Emission Behaviour of Formaldehyde in Building Materials. Procedia Engineering.121, pp. 59-66.
36.ISO 24353: 2008. Hygrothermal performance of building materials and products determination of moisture adsorption/desorption properties in response to humidity variation. Geneva, Switzerland: International Organization for Standardization; 2008.
37.JIS A 1470-1:2008. Test method of adsorption/desorption efficiency for building materials to regulate an indoor humidity-part 1: response method of humidity. Tokyo, Japan: Japanese Industrial Standards Committee.
38.Latif, E., Tucker, S., Ciupala, M. A., Wijeyesekera, D. C. and Newport, D. (2014). Hygric properties of hemp bio-insulations with differing compositions. Construction and Building Materials, 66, pp 702-711.
39.Lai, H. K., Kendall, M., Ferrier, H., Lindup, I., Alm, S., Hänninen, O., Jantunen, M., Mathys, P., Colvile, R., Ashmore, M.R., Cullinan, P. and Nieuwenhuijsen, M.J.(2004).Personal exposures and microenvironment concentrations of PM2.5, VOC, NO2 and CO in Oxford. UK.Atmos. Environ. 38, pp. 6399–6410.
40.McGregor, F., Heath, A., Fodde, E. and Shea, A. (2014). Conditions affecting the moisture buffering measurement performed on compressed earth blocks. Building and Environment, 75, pp. 11-18.
41.Mayer, B. (1983). Indoor Air Quality, MT, U.S.A.: Addison-Wesley, Reading Mass.
42.Osanyintola, O. F., Talukdar, P. and Simonson, C. J. (2006). Effect of initial conditions, boundary conditions and thickness on the moisture buffering capacity of spruce plywood. Energy and Buildings, 38(10), pp. 1283-1292.
43.Paynter, S. (2015). Humidity and respiratory virus transmission in tropical and temperate settings. Epidemiology and Infection, 143, pp. 1110–1118.
44.Ramos, N. M. M., Delgado, J. M. P. Q. and Freitas, V. P. (2010). Influence of finishing coatings on hygroscopic moisture buffering in building elements. Construction and Building Materials, 24(12), pp. 2590-2597.
45.Rode, C., Reuhkuri, R., Time, B., Gustavsan, A., Ojanen, T., Ahonen, J. and Svennberg, K. (2005). Moisture Buffering of Building Materials, Report BYG-DTU R-126. Report of the Nordisk Innovations Center, Department of Civil Engineering, Technical University of Denmark.
46.Rahim, M., Douzane, O., Tran Le, A. D., Promis, G., Laidoudi, B., Crigny, A., Dupre, B. and Langlet, T. T. (2015). Characterization of flax lime and hemp lime concretes: Hygric properties and moisture buffer capacity. Energy and Buildings, 88, pp. 91-99.
47.Schweizer, C., Edwards, R. D., Bayer-Oglesby, L., Gauderman, W.J., Ilacqua,V., Jantunen, M. J., Lai, H.K., Nieuwenhuijsen, M. and Künzli, N.. (2007).Indoor time-microenvironment-activity patterns in seven regions of Europe .Journal of exposure science & environmental epidemiology, 17 (2), pp. 170–181.
48.Svennberg, K., Hedegaard, L. and Rode, C. (2004). Moisture Buffer Performance of a Fully Furnished Room. Proceedings (CD) of the Performance of Exterior Envelopes of Whole Buildings IX International Conference, Clearwater Beach, Florida, 11 pages.
49.Schaffer, FL., Soergel ME. and Straube DC. (1976). Survival of airborne influenza virus: effects of propagating host, relative humidity, and composition of spray fluids.Arch Virol, 51: 263–273.
50.The Government of the Hong Kong Special Administrative Region(2003).Indoor Air Quality Management Group.
51.Time, B. (1998). Hygroscopic Moisture Transport in Wood. Doctoral Degree, Norwegian University.
52.Viitanen, H., Ritschkoff, A. C., Ojanen, T., Peuhkuri, R., Paajanen, L. and Lähdesmäki, K. (2010). Moisture and Bio-deterioration Risk of Building Materials and Structures. Journal of Building Physics, 33, pp. 201-224.
53.Vardoulakis, S. (2009).Human exposure: indoor and outdoor. Issues in Environmental Science and Technology. 28, pp. 85–107.
54.Yang, X., Fazio, P., Ge, H. and Rao, J. (2012). Evaluation of moisture buffering capacity of interior surface materials and furniture in a full-scale experimental investigation. Building and Environment, 47, pp. 188-196.
55.Yoshino, H., Mitamura. T. and Hasegawa, K. (2009), Moisture buffering and effect of ventilation rate and volume rate of hygrothermal materials in a single room under steady state exterior conditions. Building and Environment, 44, pp. 1418–1425.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw