進階搜尋


 
系統識別號 U0026-2807201609155200
論文名稱(中文) 基質金屬蛋白酶在平滑肌細胞和血管窄化誘導的腹主動脈瘤動物模式的表現與活化–彈性蛋白降解胜肽的角色
論文名稱(英文) Matrix metalloproteinase expression and activation in vascular smooth muscle cells and the coarctation-induced abdominal aortic aneurysm – the roles of elastin-derived peptides
校院名稱 成功大學
系所名稱(中) 細胞生物與解剖學研究所
系所名稱(英) Institute of Cell Biology and Anatomy
學年度 104
學期 2
出版年 105
研究生(中文) 許育瑄
研究生(英文) Yu-Shiuan Sheu
學號 T96024023
學位類別 碩士
語文別 英文
論文頁數 57頁
口試委員 指導教授-江美治
口試委員-王仰高
口試委員-林寶彥
口試委員-劉秉彥
中文關鍵字 腹主動脈瘤  間質金屬蛋白酶  彈性蛋白降解胜肽  血管平滑肌細胞 
英文關鍵字 abdominal aortic aneurysm  matrix metalloproteinase  elastin-derived peptides  vascular smooth muscle cells 
學科別分類
中文摘要 我們實驗室先前的研究顯示,在迷你豬的腹主動脈末端進行窄化12週後,會誘導腹主動脈瘤(abdominal aortic aneurysm, AAA)的形成。血管窄化所誘導的腹主動脈瘤(coarctation-induced AAA)呈現血管壁的彈性蛋白斷裂且分解、膠原蛋白重塑和平滑肌細胞排列雜亂的現象,這些現象與人類退化性腹主動脈瘤的觀察結果一致。明膠酶譜(gelatin zymography)分析的結果顯示腹主動脈瘤形成的過程中,間質金屬蛋白酶9 (matrix metalloproteinase,(MMP)-9)和 MMP-2 的活性明顯上升。即時聚合酶鏈式反應(real-time PCR)分析顯示MMP-3(4週)、MMP-9(4週)、MMP-13 (4週與12週)和MMP-19(4週) 訊息核醣核酸(mRNA)的表現量上升。本研究的目標為探討血管窄化所誘導的腹主動脈瘤之中表現上升的MMPs潛在的角色,並且探討彈性蛋白降解胜肽(elastin-derived peptides, EDPs)是否刺激血管平滑肌細胞MMP的表現、分泌和活化。免疫組織染色的結果顯示,MMP-3在血管窄化後4週和12週的血管壁中層平滑肌細胞表現增加,MMP-13的表現則沒有明顯變化,MMP-19在血管窄化後4週的血管壁中層與內層表現增加。使用酪蛋白酶譜(casein zymography)偵測血管窄化後,血管組織中MMP-3的活性,結果沒有顯著差異。我們進一步使用慢病毒感染人類主動脈平滑肌細胞以送入MMP-3基因,使平滑肌細胞持續表現MMP-3,以探討MMP-3過度表現對於平滑肌細胞移行的活性和肌動蛋白絲(actin filament)細胞骨架組織的影響。相對於控制組細胞,過度表現MMP-3的平滑肌細胞受由血小板衍生的生長因子(platelet-derived growth factor, (PDGF)-BB)所刺激的細胞侵入活性有增加的趨勢。初步結果顯示,相較於控制組細胞,過度表現MMP-3的平滑肌細胞在植入由纖連蛋白塗覆的聚丙烯酰胺凝膠(fibronectin-coated polyacrylamide gels, 表面硬度大約20 kPa,接近主動脈壁硬度)後,有較好的黏附與擴展性,並且表現較粗而明顯的actin filaments。我們進一步探討EDPs對血管平滑肌細胞功能的影響,發現經由EDPs處理24小時會刺激血管平滑肌細胞分泌pro-MMP-2、 pro-MMP-3和pro-MMP-9,並且具有劑量依賴性。酶譜分析發現血管平滑肌細胞分泌的pro-MMP-9的活性受到EDP的刺激,但pro-MMP-2與pro-MMP-3 的活化則不受影響。相對地,pro-MMP-13與pro-MMP-19在血管平滑肌細胞的表現與分泌量都很低且EDPs的處理亦無影響。此外,EDPs的處理對血管平滑肌細胞的細胞增生(細胞計數法)和細胞移行(傷口癒合試驗) 皆無影響。上述結果顯示,血管窄化所誘導的腹主動脈瘤形成的過程中,MMP-3的表現與(或)分泌量的增加,可能促進血管平滑肌細胞actin filament細胞骨架組織和細胞移行的活性,因而影響血管重塑。此外,由彈性蛋白碎裂所產生的EDPs可能透過刺激血管平滑肌細胞分泌與(或)活化pro-MMP-2、 pro-MMP-3和 pro-MMP-9,促進血管重塑。
英文摘要 Previous studies from our laboratory showed that prolonged coarctation of a terminal segment of the abdominal aorta for 12 weeks induced the formation of abdominal aortic aneurysm (AAA) in mini pigs. The coarctation-induced AAA exhibited elastic lamella fragmentation and degradation, collagen remodeling, and smooth muscle disarray, consistent with degenerative AAA observed in human. Gelatin zymography showed that activation of both matrix metalloproteinase (MMP)-9 and MMP-2 increased during AAA formation. Real-time polymerase chain reaction (PCR) analysis further showed that mRNA levels of MMP-3 (4w), MMP-9 (4w), MMP-13 (4w and 12w), and MMP-19 (4w) were elevated in the AAA segment. This study was aimed to investigate the potential roles of upregulated MMPs in the coarctation-induced AAA formation and whether elastin-derived peptides (EDPs) induce MMP expression, secretion, and activation in vascular smooth muscle cells (VSMCs). Immunohistochemical staining showed that MMP-3 levels increased in the medial VSMCs at 4w and 12w post-coarctation, MMP-13 levels did not change markedly, whereas MMP-19 increased in the media and intima at 4w post-coarctation. In tissue homogenates of the distal AA, MMP-3 activity detected with casein zymography did not change significantly. The effect of MMP-3 overexpression on VSMC migration activity and actin cytoskeleton organization was further examined in cultured human aortic VSMCs overexpressing MMP-3 encoded by lentivirus. VSMCs overexpressing mCherry-MMP-3 exhibited apparently higher invasion activity stimulated with platelet-derived growth factor (PDGF)-BB than cells expressing mCherry vector alone. On fibronectin-coated polyacrylamide gels with stiffness close to the aortic wall (~20 kPa), preliminary results showed that MMP-3-expressing VSMCs exhibited better adhesion and spreading with more prominent actin filaments compared to vector-expressing VSMCs. In human aortic VSMCs, treatment of EDPs for 24 hours increased the secretion of pro-MMP-2, pro-MMP-3, and pro-MMP-9 in a dose-dependent manner. Zymography analysis showed that activation of secreted pro-MMP-9, but not pro-MMP-2 or pro-MMP-3, was stimulated by EDPs treatment. In contrast, the expression and secretion levels of pro-MMP-13 and pro-MMP-19 in VSMCs were low and EDPs treatment had no effect. In addition, EDPs treatment did not affect VSMCs proliferation rate and migration activities assessed with cell counting and wound-healing assay. These results suggested that increased MMP-3 expression and/or secretion during coarctation-induced AAA formation may promote actin filament reorganization and migration activity of VSMCs and hence vascular remodeling. In addition, EDPs derived from elastic lamella fragmentation may contribute to vascular remodeling through stimulating the secretion and/or activation of pro-MMP-2, pro-MMP-3, and pro-MMP-9.
論文目次 誌謝 1
中文摘要 2
Abstract 4
Introduction 6
Objectives of this study 9
Materials and Methods 10
Results 18
Discussion 22
References 26
Tables 32
Figures 35
Appendix 57

參考文獻 1. McGregor JC, Pollock JG, Anton HC. The value of ultrasonography in the diagnosis of abdominal aortic aneurysm. Scott Med J 1975,20:133-137.
2. Johnston KW, Rutherford RB, Tilson MD, Shah DM, Hollier L, Stanley JC. Suggested standards for reporting on arterial aneurysms. Subcommittee on Reporting Standards for Arterial Aneurysms, Ad Hoc Committee on Reporting Standards, Society for Vascular Surgery and North American Chapter, International Society for Cardiovascular Surgery. J Vasc Surg 1991,13:452-458.
3. Singh K, Bonaa KH, Jacobsen BK, Bjork L, Solberg S. Prevalence of and risk factors for abdominal aortic aneurysms in a population-based study : The Tromso Study. Am J Epidemiol 2001,154:236-244.
4. Kent KC, Zwolak RM, Egorova NN, Riles TS, Manganaro A, Moskowitz AJ, et al. Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals. J Vasc Surg 2010,52:539-548.
5. Landenhed M, Engstrom G, Gottsater A, Caulfield MP, Hedblad B, Newton-Cheh C, et al. Risk profiles for aortic dissection and ruptured or surgically treated aneurysms: a prospective cohort study. J Am Heart Assoc 2015,4:e001513.
6. Davis FM, Rateri DL, Daugherty A. Abdominal aortic aneurysm: novel mechanisms and therapies. Curr Opin Cardiol 2015,30:566-573.
7. Anidjar S, Salzmann JL, Gentric D, Lagneau P, Camilleri JP, Michel JB. Elastase-induced experimental aneurysms in rats. Circulation 1990,82:973-981.
8. Chiou AC, Chiu B, Pearce WH. Murine aortic aneurysm produced by periarterial application of calcium chloride. J Surg Res 2001,99:371-376.
9. Freestone T, Turner RJ, Higman DJ, Lever MJ, Powell JT. Influence of hypercholesterolemia and adventitial inflammation on the development of aortic aneurysm in rabbits. Arterioscler Thromb Vasc Biol 1997,17:10-17.
10. Daugherty A, Manning MW, Cassis LA. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest 2000,105:1605-1612.
11. Lin PY, Wu YT, Lin GC, Shih YH, Sampilvanjil A, Chen LR, et al. Coarctation-induced degenerative abdominal aortic aneurysm in a porcine model. J Vasc Surg 2013,57:806-815 e801.
12. Kuivaniemi H, Ryer EJ, Elmore JR, Hinterseher I, Smelser DT, Tromp G. Update on abdominal aortic aneurysm research: from clinical to genetic studies. Scientifica (Cairo) 2014,2014:564734.
13. Guzik B, Sagan A, Ludew D, Mrowiecki W, Chwala M, Bujak-Gizycka B, et al. Mechanisms of oxidative stress in human aortic aneurysms--association with clinical risk factors for atherosclerosis and disease severity. Int J Cardiol 2013,168:2389-2396.
14. Moehle CW, Bhamidipati CM, Alexander MR, Mehta GS, Irvine JN, Salmon M, et al. Bone marrow-derived MCP1 required for experimental aortic aneurysm formation and smooth muscle phenotypic modulation. J Thorac Cardiovasc Surg 2011,142:1567-1574.
15. Schonbeck U, Sukhova GK, Gerdes N, Libby P. T(H)2 predominant immune responses prevail in human abdominal aortic aneurysm. Am J Pathol 2002,161:499-506.
16. Shimizu K, Mitchell RN, Libby P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2006,26:987-994.
17. Miller FJ, Jr., Sharp WJ, Fang X, Oberley LW, Oberley TD, Weintraub NL. Oxidative stress in human abdominal aortic aneurysms: a potential mediator of aneurysmal remodeling. Arterioscler Thromb Vasc Biol 2002,22:560-565.
18. Reeps C, Pelisek J, Seidl S, Schuster T, Zimmermann A, Kuehnl A, et al. Inflammatory infiltrates and neovessels are relevant sources of MMPs in abdominal aortic aneurysm wall. Pathobiology 2009,76:243-252.
19. Lohoefer F, Reeps C, Lipp C, Rudelius M, Haertl F, Matevossian E, et al. Quantitative expression and localization of cysteine and aspartic proteases in human abdominal aortic aneurysms. Exp Mol Med 2014,46:e95.
20. Lipp C, Lohoefer F, Reeps C, Rudelius M, Baummann M, Heemann U, et al. Expression of a disintegrin and metalloprotease in human abdominal aortic aneurysms. J Vasc Res 2012,49:198-206.
21. Lopez-Candales A, Holmes DR, Liao S, Scott MJ, Wickline SA, Thompson RW. Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms. Am J Pathol 1997,150:993-1007.
22. Stegemann C, Didangelos A, Barallobre-Barreiro J, Langley SR, Mandal K, Jahangiri M, et al. Proteomic identification of matrix metalloproteinase substrates in the human vasculature. Circ Cardiovasc Genet 2013,6:106-117.
23. Newby AC. Matrix metalloproteinase inhibition therapy for vascular diseases. Vascul Pharmacol 2012,56:232-244.
24. Iyer RP, Patterson NL, Fields GB, Lindsey ML. The history of matrix metalloproteinases: milestones, myths, and misperceptions. Am J Physiol Heart Circ Physiol 2012,303:H919-930.
25. Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol 2008,75:346-359.
26. Newman KM, Ogata Y, Malon AM, Irizarry E, Gandhi RH, Nagase H, et al. Identification of matrix metalloproteinases 3 (stromelysin-1) and 9 (gelatinase B) in abdominal aortic aneurysm. Arterioscler Thromb 1994,14:1315-1320.
27. Carrell TW, Burnand KG, Wells GM, Clements JM, Smith A. Stromelysin-1 (matrix metalloproteinase-3) and tissue inhibitor of metalloproteinase-3 are overexpressed in the wall of abdominal aortic aneurysms. Circulation 2002,105:477-482.
28. Longo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N, Baxter BT. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest 2002,110:625-632.
29. Wang Y, Ait-Oufella H, Herbin O, Bonnin P, Ramkhelawon B, Taleb S, et al. TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice. J Clin Invest 2010,120:422-432.
30. Longo GM, Buda SJ, Fiotta N, Xiong W, Griener T, Shapiro S, et al. MMP-12 has a role in abdominal aortic aneurysms in mice. Surgery 2005,137:457-462.
31. Lizarbe TR, Tarin C, Gomez M, Lavin B, Aracil E, Orte LM, et al. Nitric oxide induces the progression of abdominal aortic aneurysms through the matrix metalloproteinase inducer EMMPRIN. Am J Pathol 2009,175:1421-1430.
32. Meijer CA, Stijnen T, Wasser MN, Hamming JF, van Bockel JH, Lindeman JH, et al. Doxycycline for stabilization of abdominal aortic aneurysms: a randomized trial. Ann Intern Med 2013,159:815-823.
33. Maurice P, Blaise S, Gayral S, Debelle L, Laffargue M, Hornebeck W, et al. Elastin fragmentation and atherosclerosis progression: the elastokine concept. Trends Cardiovasc Med 2013,23:211-221.
34. Qin Z. Soluble elastin peptides in cardiovascular homeostasis: Foe or ally. Peptides 2015,67:64-73.
35. Lindholt JS, Heickendorff L, Henneberg EW, Fasting H. Serum-elastin-peptides as a predictor of expansion of small abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 1997,14:12-16.
36. Petersen E, Wagberg F, Angquist KA. Serum concentrations of elastin-derived peptides in patients with specific manifestations of atherosclerotic disease. Eur J Vasc Endovasc Surg 2002,24:440-444.
37. Duca L, Floquet N, Alix AJ, Haye B, Debelle L. Elastin as a matrikine. Crit Rev Oncol Hematol 2004,49:235-244.
38. Mochizuki S, Brassart B, Hinek A. Signaling pathways transduced through the elastin receptor facilitate proliferation of arterial smooth muscle cells. J Biol Chem 2002,277:44854-44863.
39. Tummalapalli CM, Tyagi SC. Responses of vascular smooth muscle cell to extracellular matrix degradation. J Cell Biochem 1999,75:515-527.
40. Simionescu A, Philips K, Vyavahare N. Elastin-derived peptides and TGF-beta1 induce osteogenic responses in smooth muscle cells. Biochem Biophys Res Commun 2005,334:524-532.
41. Wachi H, Seyama Y, Yamashita S, Suganami H, Uemura Y, Okamoto K, et al. Stimulation of cell proliferation and autoregulation of elastin expression by elastin peptide VPGVG in cultured chick vascular smooth muscle cells. FEBS Lett 1995,368:215-219.
42. Desforges M. Elastin-derived peptides stimulate trophoblast migration and invasion: a positive feedback loop to enhance spiral artery remodelling. Molecular HumanReproduction 2015.
43. 陳玲麗. 在窄化所誘導的腹主動脈瘤豬模式中間質金屬酶及其抑制蛋白的特異性表現. 台南市: 國立成功大學; 2014:89.
44. Davis V, Persidskaia R, Baca-Regen L, Itoh Y, Nagase H, Persidsky Y, et al. Matrix metalloproteinase-2 production and its binding to the matrix are increased in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 1998,18:1625-1633.
45. Lo IC, Shih JM, Jiang MJ. Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. J Biomed Sci 2005,12:377-388.
46. Kolipaka A, Illapani VS, Kenyhercz W, Dowell JD, Go MR, Starr JE, et al. Quantification of abdominal aortic aneurysm stiffness using magnetic resonance elastography and its comparison to aneurysm diameter. J Vasc Surg 2016.
47. Imai K, Yokohama Y, Nakanishi I, Ohuchi E, Fujii Y, Nakai N, et al. Matrix metalloproteinase 7 (matrilysin) from human rectal carcinoma cells. Activation of the precursor, interaction with other matrix metalloproteinases and enzymic properties. J Biol Chem 1995,270:6691-6697.
48. Ogata Y, Enghild JJ, Nagase H. Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J Biol Chem 1992,267:3581-3584.
49. George SJ, Dwivedi A. MMPs, cadherins, and cell proliferation. Trends Cardiovasc Med 2004,14:100-105.
50. Johnson JL, George SJ, Newby AC, Jackson CL. Divergent effects of matrix metalloproteinases 3, 7, 9, and 12 on atherosclerotic plaque stability in mouse brachiocephalic arteries. Proc Natl Acad Sci U S A 2005,102:15575-15580.
51. Johnson JL, Dwivedi A, Somerville M, George SJ, Newby AC. Matrix metalloproteinase (MMP)-3 activates MMP-9 mediated vascular smooth muscle cell migration and neointima formation in mice. Arterioscler Thromb Vasc Biol 2011,31:e35-44.
52. Kallenbach K, Salcher R, Heim A, Karck M, Mignatti P, Haverich A. Inhibition of smooth muscle cell migration and neointima formation in vein grafts by overexpression of matrix metalloproteinase-3. J Vasc Surg 2009,49:750-758.
53. MacSweeney ST, Young G, Greenhalgh RM, Powell JT. Mechanical properties of the aneurysmal aorta. Br J Surg 1992,79:1281-1284.
54. Vande Geest JP, Sacks MS, Vorp DA. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech 2006,39:1324-1334.
55. Roman MJ, Devereux RB, Schwartz JE, Lockshin MD, Paget SA, Davis A, et al. Arterial stiffness in chronic inflammatory diseases. Hypertension 2005,46:194-199.
56. Raaz U, Zollner AM, Schellinger IN, Toh R, Nakagami F, Brandt M, et al. Segmental aortic stiffening contributes to experimental abdominal aortic aneurysm development. Circulation 2015,131:1783-1795.
57. Hickson SS, Butlin M, Graves M, Taviani V, Avolio AP, McEniery CM, et al. The relationship of age with regional aortic stiffness and diameter. JACC Cardiovasc Imaging 2010,3:1247-1255.
58. Galis ZS. Cytokine-Stimulated Human Vascular Smooth Muscle Cells Synthesize a Complement of Enzymes Required for Extracellular Matrix Digestion. Circulation Research 1994.
59. Yanagi H, Sasaguri Y, Sugama K, Morimatsu M, Nagase H. Production of tissue collagenase (matrix metalloproteinase 1) by human aortic smooth muscle cells in response to platelet-derived growth factor. Atherosclerosis 1991,91:207-216.
60. Cui Y, Sun YW, Lin HS, Su WM, Fang Y, Zhao Y, et al. Platelet-derived growth factor-BB induces matrix metalloproteinase-2 expression and rat vascular smooth muscle cell migration via ROCK and ERK/p38 MAPK pathways. Mol Cell Biochem 2014,393:255-263.
61. Kamoun A, Landeau JM, Godeau G, Wallach J, Duchesnay A, Pellat B, et al. Growth stimulation of human skin fibroblasts by elastin-derived peptides. Cell Adhes Commun 1995,3:273-281.
62. Peterszegi G, Robert AM, Robert L. Presence of the elastin-laminin receptor on human activated lymphocytes. C R Acad Sci III 1996,319:799-803.
63. Hinek A. Nature and the multiple functions of the 67-kD elastin-/laminin binding protein. Cell Adhes Commun 1994,2:185-193.
64. Blaise S, Romier B, Kawecki C, Ghirardi M, Rabenoelina F, Baud S, et al. Elastin-derived peptides are new regulators of insulin resistance development in mice. Diabetes 2013,62:3807-3816.
65. Ooyama T, Fukuda K, Oda H, Nakamura H, Hikita Y. Substratum-bound elastin peptide inhibits aortic smooth muscle cell migration in vitro. Arteriosclerosis 1987,7:593-598.
66. Desforges M, Harris LK, Aplin JD. Elastin-derived peptides stimulate trophoblast migration and invasion: a positive feedback loop to enhance spiral artery remodelling. Mol Hum Reprod 2015,21:95-104.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-07-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-07-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw