進階搜尋


下載電子全文  
系統識別號 U0026-2807201609093200
論文名稱(中文) 超臨界二氧化碳環境下對添加碳化矽套管水泥力學與物化性質之研究
論文名稱(英文) A Study of the Mechanical, Physical and Chemical Properties of API G Well Cement with Silicon Carbide Admixtures Exposed to Supercritical CO2 Environment
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 謝欣婷
研究生(英文) Hsin-Ting Hsieh
學號 n46034065
學位類別 碩士
語文別 中文
論文頁數 126頁
口試委員 指導教授-王建力
口試委員-謝秉志
口試委員-馬正明
口試委員-劉名樓
中文關鍵字 API-G水泥  碳化矽(SiC)  超臨界二氧化碳  碳酸化 
英文關鍵字 API Class G  silicon carbide  supercritical CO2  carbonation 
學科別分類
中文摘要 二氧化碳捕獲與封存是目前公認最有效的減碳技術之一,台灣西部濱海深部鹽水層具有百億噸以上龐大的封存潛能。但封存場址處於高溫、高壓且潮濕環境下,注入的二氧化碳會與水反應形成碳酸,影響隔離套管與井孔岩壁的套管水泥(API-G水泥)並產生碳酸化反應,使得水泥材料的力學性質降低,進而造成二氧化碳洩漏,縮短有效封存的時間。
因此本研究針對上述情形規劃對套管水泥(API-G水泥)及添加不同粒徑(毫米(mm)、微米(μm)、奈米(nm))碳化矽(SiC)之套管水泥進行試驗。試驗規劃分成水泥漿體及水泥塊體,水泥塊體置入模擬井底高溫高壓環境(45°C、25MPa之超臨界二氧化碳溶於去離子水),觀察經過不同反應時間(未反應、3、7、14、28、56、84天)之物理、化學及微觀性質變化。研究結果發現添加毫米碳化矽(mm-SiC)之套管水泥,可使水泥於反應期間產生緻密層,減緩外部碳酸持續向內部侵蝕並維持其力學強度,有較佳之防止水泥碳化而弱化之能力。
英文摘要 Carbon capture and storage (CCS) is regarded as one of the most effective carbon reduction technologies. Deep saline aquifers in the coast of western Taiwan have the potential for storing more than 10 billion tons of CO2. However, the storage site is exposed to high temperatures and pressures. Consequently, Injection of CO2 which reacts with water to form carbonic acid, results in the carbonation of the insulating casings as well as casing cement (API Class G) on the borehole. This reduces the mechanical properties of the cement material, thereby causing CO2 leakage and shortening storage time.
To address this concern, this study conducted experiments on casing cement (API Class G) (America Petroleum Institute, abbreviation API) pastes and blocks added with silicon carbide (SiC) of different grain sizes (mm, μm, nm). Cement blocks were placed in a simulated high-temperature and high-pressure borehole (with supercritical CO2 dissolved in deionized water at 45°C and 25 MPa) to observe the changes in their physicochemical and microscopic properties (0, 3, 7, 14, 28, 56, 84 days).
It was observed that, during the reaction between CO2 and water, a compact layer was formed by mm-SiC carbide casing cement. This layer enabled the cement material to attenuate the erosion of carbonic acid arising from supercritical CO2 dissolution in deionized water. This maintains the mechanical strength of the cement material and prevents deterioration of cements caused by carbonization.
論文目次 摘 要(I)
Extended Abstract(II)
誌 謝(XIII)
目 錄(XIV)
表目錄(XVIII)
圖目錄(XX)
符號表(XXV)
第一章 緒論(1)
1-1 研究動機與目的(1)
1-2 研究內容與流程(4)
第二章 文獻回顧(6)
2-1 二氧化碳捕獲與封存(6)
2-1-1 碳捕獲與封存(Carbon Capture and Storage)(6)
2-1-2 二氧化碳於封存中洩漏之研究(8)
2-1-3 二氧化碳於封存中洩漏之實例(12)
2-2 水泥漿體比重與黏度(14)
2-2-1 水泥漿體比重(15)
2-2-2 水泥漿體黏度(17)
2-3 二氧化碳對水泥之碳化與實例介紹(21)
2-3-1 碳酸化機制(21)
2-3-2 水泥碳化對化學性質之影響(27)
2-3-3 水泥碳化對力學性質之影響(30)
2-4 消泡劑、減水劑及相關摻料性質介紹(36)
2-4-1 添加消泡劑與減水劑之相關應用(37)
2-4-1-1 添加消泡劑之應用(37)
2-4-1-2 添加減水劑之應用(39)
2-4-2 添加矽酸化合物之水泥應用(42)
2-4-3 碳化矽(SiC)性質及相關應用探討(50)
第三章 試驗材料及設備(59)
3-1 試體材料(59)
3-2 試體製成(64)
3-3 超臨界二氧化碳反應設備(67)
3-4 各項試驗設備與方法(69)
3-4-1 比重(Specific Gravity)量測(69)
3-4-2 黏度(Viscosity)量測(71)
3-4-3 透水試驗(74)
3-4-4 超聲波檢測(76)
3-4-5 單軸壓縮試驗(77)
3-4-6 碳化深度量測(80)
3-4-7 X光粉末繞射分析(X-ray Diffractometer, XRD)(81)
3-4-8 微結構分析(SEM)(82)
第四章 試驗結果與討論(84)
4-1 黏度與比重(84)
4-2 超聲波試驗之P波與S波速率(87)
4-3 透水比(89)
4-4 單軸壓縮強度(92)
4-5 碳化深度(94)
4-6 化性分析(XRD、SEM)(95)
4-7 實驗數據之相關性(103)
4-7-1 動態泊松比與動態楊氏模數(103)
4-7-2 動態楊氏模數與單軸壓縮強度之關係(105)
4-7-3 透水比與碳化深度之關係(106)
4-7-4 單軸壓縮強度與碳化深度之關係(107)
4-7-5 綜合討論(108)
第五章 結論與建議(111)
5-1 結論 111
5-2 建議(114)
參考文獻(116)
附錄(125)
超聲波試驗量測P波與S波原始數據(125)

參考文獻 [1]翁豐源、湯純雄,「鑽採試驗」,中國石油學會,1962。
[2]陳金土、邱金水等人,「鑽採工程材料手冊:第八篇─套管與下水泥工程」,中油股份有限公司台灣油礦探勘總處,1987。
[3]陳金土、邱金水等人,「鑽採工程材料手冊:第六之三篇─泥漿循環系統」,中油股份有限公司台灣油礦探勘總處,1987。
[4]詹益謙等人,「鑽井工程」,中國石油學會,1973。
[5]黃海燕、張子明,「混凝土的尺寸效應」,全國建築科學核心期刊,第3期,2004。
[6]周明芳,倪紅堅,「顆粒級配增強低密度油井水泥的實驗研究」,鑽採工藝期刊,第29卷,第6期,2006。
[7]溫興水,「減水劑對水泥穩定碎石性能的影響」,浙江交通職業技術學院學報,第7卷,第4期,2006。
[8]李友勝,李楠等人,「鋁酸鈣水泥結合莫來石-碳化矽澆注料的組合及性能」,碳酸鹽通報期刊,第26卷,第4期,2007。
[9]高慧真,「改善水庫淤泥對水泥砂漿水化速率與工程性質之影響」,國立成功大學土木工程研究所碩士論文,2008。
[10]李靈燕,劉媛媛,「淺談二氧化碳捕集和封存」,中國科技財富期刊,第20期,2009。
[11]吳家明,張作宏等人,「有機矽消泡劑在油井水泥漿中的性能研究」,有機矽材料期刊,第23卷,第6期,2009。
[12]歐陽湘,廖啟雯,「由二氧化碳減排看二氧化碳捕獲與封存技術發展」,經濟前瞻雜誌,2010。
[13]呂斌,侯立偉等人,「新型奈米油井水泥漿體系的試內研究」,鑽井液與完井液期刊,第27卷,第4期,2010。
[14]李紀偉,張光普等人,「引入碳化矽超細粉對加熱爐用低水泥澆注料性能的影響」,全國不定型耐火材料學術會議論文集,2011。
[15]鮮明,李然等人,「固井水泥車載密度計原理分析」,傳感器世界期刊,第18卷,第9期,2012。
[16]馬維華,「碳化矽對鋁酸鹽水泥性能的影響」,價值工程期刊,第31卷,第30期,2012。
[17]江健豪,「超臨界二氧化碳環境下對套管水泥力學與物化性質之影響」,國立成功大學資源工程研究所碩士論文,2012。
[18]蔡冬雪、王磊等人,「重蓋及碳化矽摻量對不同矽酸鹽水泥基自流平性能的影響」,中國建材科技期刊,第23卷,第4期,2014。
[19]譚志豪、劉浙仁等人,「台灣發展二氧化碳地質封存之優勢、機會與策略」,中興工程,第124期,第23~32頁,2014。
[20]尹衍樑 、鄭瑞濱等人,「探討水泥化性與減水劑對於水泥漿體流變行為影響之研究」,中國土木水利工程期刊,第26卷,第3期,2014。
[21]郭俊志,「二氧化碳封存環境下對封固材料基本性質影響之研究」,國立成功大學資源工程研究所博士論文,2015。
[22]侯銳、師慶山等人,「淺談二氧化碳封存及提高石油採收率的探討與研究」,化學管理期刊,第35期,2015。
[23]Ashok, S., B. R. Reddy, L. Feng, F. Rocky, Halliburton, “Reaction of CO2 with Portland Cement at Downhole Conditions and the Role of Pozzolanic Supplements,” SPE 121103, 2009.
[24]Andrew, G., K. J. Jung, R. K. Muhammad, R. T. M. Mahmoud, M. ASCE, “Microstructure of a Type G Oil WellCement-Nanosilica Blend,” The American Society of Civil Engineers, 2014.
[25]Adnan, A., “Upgraded ISRM Suggested Method for Determining SoundVelocity by Ultrasonic Pulse Transmission Technique,” Rock Mech Rock Eng, 47, 255-259, 2014.
[26]Aiex, C., G. Campos, Petrobras, A. Deshpande, A. Chiney, S. Patil, K. Ravi, Halliburton, “An Experimental Study on Effects of Static CO2 on Cement under High-Pressure/High-Temperature Conditions,” OTC-25659-MS, 2015.
[27]Brandl, A., J. Cutler, A. Seholm, M. Sansil, G. Braun, “Cementing Solutions for Corrosive Well Environments,” SPE Drilling & Completion, 2011.
[28]Bahari, A., A. Sadeghi nik, M. Roodbari, K. Taghavi, S. E. mirshafiei, “Synthesis and strength study of cement mortarscontaining SiC nano particles,” Digest Journal of Nano materials and Biostructures, Vol. 7, No. 4, p. 1427-1435, 2012.
[29]Carey, J. W., M. Wigand, S. J. Chipera, G. Wolde-Gabriel, R. Pawar, P. C. Lichtner, S. Wehner, M. Raines, G. D. Guthrie Jr., “Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit,” International Journal of Greenhouse Gas Control 1, 75-85, 2007.
[30]Duguid, A., “The Effect of Carbonic Acid on Well Cements as Identified Through Lab and Field Studies,” SPE 119504, 2008.
[31]Ershadi, V., T. Ebadi, A.R Rabani, L. Ershadi, H. Soltanian, “The Effect of Nanosilica on Cement Matrix Permeability in Oil Well to Decrease the Pollution of Receptive Environment,” International Journal of Enviromental Science and Development, Vol. 2, No. 2, 2011.
[32]Fu, Q. G., H. J Li, Y. J. Wang, K. Z. Li, X. H. Shi, “B2O3 modified SiC–MoSi2 oxidation resistant coating for carbon/carbon composites by a two-step pack cementation,” Corrosion Science, 51, 2450-2454, 2009.
[33]Hossain, M. M., M. M. Amro, “Drilling and cmpletion callenges and remedies of CO2 injected wells with emphasis to mitigate well integrity issues,” SPE 133830, 2010.
[34]Han, D., G. C. Lee, S. J. Yoon, K. M. Kim, “Viscosity influence on rising behavior of model air bubbles in fresh mortar,” Construction and Building Materials, 76, 10–15, 2015.
[35]IPCC Carbon Dioxide Capture and and Storage Cambridge University Press, UK:IPCC, 2005.
[36]Kutchko, B. G., B. R. Strazisar, N. Huerta, G.V Lowry, D. A. Dzombak, N. Thaulow, “CO2 reaction with hydrated class H well cement under geologic sequestration conditions: effects of flyash admixtures,” Environmental Science and Technology, 43 (10), 3947–3952, 2009.
[37]Koji, T., B. Yogesh, H. Hiroyuki, S. F. Lunkad, “TCement-Sheath Wellbore Integrity for CO2 Injection and Storage Wells,” SPE 127422, 2010.
[38]Kutchko, B. G., B. R. Strazisar, S. B. Hawthorne, C. L. Lopano, D. J. Miller, J. A. Hakala, G. D. Guthrie,“H2S–CO2 reaction with hydrated Class H well cement: Acid-gas injection and CO2 Co-sequestration,” International Journal of Greenhouse Gas Control, 5, 880–888, 2011.
[39]Karamian, E., A. Monshi, A. Bataille, A. Zadhoush, “Formation of nano SiC whiskers in bauxite–carbon composite materials and their consequences on strength and density,” Journal of the European Ceramic Societ, 31, 2677–2685, 2011.
[40]Kim, J. J., M. K. Rahman, A. A. Al-Majed, M. M. Al-Zahrani, M. M. R. Taha, “Nanosilica effects on composition and silicate polymerization in hardened cement paste cured under high temperature and pressure,” Cement & Concrete Composites, 43, 78–85, 2013.
[41]Lesti, M., C. Tiemeyer, J. Plank, “CO2 stability of Portland cement based well cementing systems foruse on carbon capture & storage (CCS) wells,” Cement and Concrete Research, 45, 45-54, 2013.
[42]Lin, Y., D. Zhu, D. Zeng, Y. Yang, T. Shi, K. Deng, C. Ren, D. Zhang,
F. Wang, “Experimental studies on corrosion of cement in CO2 injection wells under supercritical conditions,” Corrosion Science, 74, 13-21, 2013.
[43]Moroni, N., E. E&P. Division, A. Santra, K. Ravi, W. Hunter, Halliburton,“Holistic Design of Cement Systems to Survive CO2 Environment,” SPE 124733, 2009.
[44]Mahmoudkhani, A., L. Bava, B. Wilson, Kemira, “An Innovative Approach for Laboratory Evaluation of Defoamers for Oilfield Cementing Applications,” SPE 143825, 2011.
[45]Nordbotten, J. M., M. A. Celia, S. Bachu, H. K. Dahle, “Semianlytical solution for CO2 leakage through an abandoned well,” Environmental Science and Technology , 39, 602-611, 2005.
[46]Neuville, N., G. Aouad, E. Lecolier, D. Damidot, “Innovative Leaching Tests of an Oilwell Cement Paste for CO2 Storage: Effect of the Pressure at 80°C,” Energy Procedia, 23, 472-479, 2012.
[47]Nasvi, M. C. M., P. G. Ranjith, J. Sanjayan, “Effect of different mix compositions on apparent carbon dioxide (CO2) permeability of geopolymer: Suitability as well cement for CO2 sequestration wells,” Applied Energy, 114, 939-948, 2014.
[48]Onan, D. D., “Effects of supercritical carbon dioxide on well cements,” SPE 12593, 1984.
[49]Rong, Z. D., W. Sun, H. J. Xiao, W. Wang, “Effect of silica fume and fly ash on hydration and microstructure evolution of cement based composites at low water–binder ratios,” Construction and Building Materials, 51, 446-450, 2014.
[50]Ren, B., S. San, Y. Li, Y. Xu, “Effects of oxidation of SiC aggregates on the microstructure and properties of bauxite–SiC composite refractories,” Ceramics International, 41, 2892–2899, 2015.
[51]Rodrigues, C. F. A., M. A. P. Dinis, M. J. L. Sousa, “Quantitative estimation of CO2 leakage from geological storage: Analytical models, numerical models and data needs,” Environ Earth Sci, 74, 2553-2561, 2015.
[52]Van Itterbeeck, P., H. Cuypers, J. Orlowsky, J. Wastiels, “Evaluation of the strand in cement (SIC) test for GRCs with improved durability,” Materials and Structures, 41, 1109-1116, 2008.
[53]Zhang, J., Y. Wang, M. Xu, Q. Zhao, “Effect of carbon dioxide corrosion on compressive strength of oil-well cement,” Journal of the chinese ceramic society, Vol.37, No.4l, 2009.
[54]Zhao, W., D. Li, Q. Li, Z. Wang, “Researches on Properties of Polymer Modified Rapid Hardening Sulphoaluminate Cement Repair Mortar,” Advanced Materials Research, Vols. 168-170, pp 1767-1771, 2010.
[55]Zawrah, M. F., A. A. El-Kheshen, A. A. El-Maghraby, “Effect of SiC–graphite–Al-metal addition on low- andultra-low cement bauxite castables,” Ceramics International, 38, 3857-3862, 2012.
[56]Zhang, M., S. Talman, “Experimental Study of Well Cement Carbonation under Geological Storage Conditions,” Energy Procedia, 63, 95813-5821, 2014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw