進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2807201519265200
論文名稱(中文) 奈米球微影相關術應用於製作矽奈米網場效應電晶體及金屬超穎材料
論文名稱(英文) Application of Nanosphere-related Lithography to fabricate Silicon Nanonet Field-Effect Transistors and Metallic Metamaterials
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 103
學期 2
出版年 104
研究生(中文) 曾富田
研究生(英文) Fu-Tien Tseng
學號 l76021197
學位類別 碩士
語文別 中文
論文頁數 110頁
口試委員 指導教授-張允崇
口試委員-藍永強
口試委員-賴韋志
中文關鍵字 奈米球鏡微影術  氧電漿處理奈米球微影術  矽奈米網場效應電晶體 
英文關鍵字 Nanospherical-Lens Lithography  oxygen plasma-treated Nanosphere Lithography  silicon nanonet field-effect transistors 
學科別分類
中文摘要 本論文中,利用奈米球鏡微影術搭配傾角旋轉曝光、傾角旋轉蒸鍍等製程來製作特殊奈米結構,同時可以利用Free-Standing技術將製作出的金屬奈米網狀膜轉移到其他元件上,並尋找更多元的應用。此外我們還利用奈米球微影術搭配氧電漿輔助製作金屬奈米網,藉由氧電漿蝕刻技術使奈米球球徑縮小,增加球與球間的間距,再蒸鍍上鉻(Cr)金屬後,即可成功製作出大面積的鉻金屬奈米網狀陣列,鉻金屬奈米網狀陣列可作為後續矽奈米網的蝕刻遮罩。
首先,奈米球鏡微影術是利用奈米球作為聚焦透鏡聚焦入射之紫外光對光阻曝光,搭配非對稱線性光源曝光,可以製作出橢圓形光阻洞,藉由旋轉斜向蒸鍍製作出橢圓金屬網狀陣列,利用Free-Standing技術可使金屬網狀膜轉移至其他基板上作為元件導電層。此外利用非對稱光源結合平移、傾角及旋轉的方式進行多次曝光,可以製作出長軸約200nm短軸約100nm之三次錯位橢圓金屬陣列。
氧電漿處理奈米球微影術搭配黃光微影製程,可以成功製作出矽奈米網場效應電晶體。利用奈米球微影術搭配氧電漿輔助在離子佈植進行硼(B)離子摻雜的絕緣體上層矽(SOI)基板上製作出鉻金屬奈米網,奈米網的最小間距為103nm,藉由黃光微影術定義大小為15μm*15μm的感測區,進行二次鉻金屬蒸鍍,並定義電極區乾蝕刻阻擋層,利用ICP乾蝕刻至二氧化矽絕緣層,除去鉻金屬後,蒸鍍上鈦(Ti)金屬電極即可完成元件製作,另外利用黃光微影改變感測區的長寬比,並去比較不同長寬比感測區及不同最小間距的電特性分析。
綜上所論,本研究利用奈米球鏡微影術搭配非對稱線性光源曝光,可以製作出橢圓形光阻洞,藉由旋轉斜向蒸鍍製作出橢圓金屬網狀陣列,另外利用氧電漿處理奈米球微影術製作出金屬奈米網及矽半導體奈米網搭配黃光微影製程製作出矽奈米網場效應電晶體,未來在水相下進行生醫感測方面的應用。
英文摘要 In this dissertation, we will demonstrate how to fabricate metallic metamaterials and Silicon nanonet Field-Effect Transistors (FETs) using Nanosphere-related lithography techniques. To fabricate metallic metamaterials, we have included techniques such as angled-exposure and angled deposition in Nanospheircal-Lens Lithography (NLL). Planar metamaterials consisting of nanoparticles or nanoholes can be successfully fabricated in large-scale. Plasma-treated Nanosphere Lithography is used to fabricate the etching mask for Silicon nanonet FETs. The patterning of the nanonet FETs is achieved by dry etch method. The minimum width of the nanonet can be as small as 103 nm. Silicon nanonet covering an area of 15μm x 15μm with connecting electrodes can be successfully fabricated using standard semiconductor fabrication procedures. Preliminary results from the electrical measurements of these devices are also presented. Various parameters, including the width and length of the nanonet, and their effects on the electrical properties of the devices are also studied. In the future, we will test how these devices can work in the liquid environment for biosensing applications.
論文目次 摘要 I
英文摘要 III
致謝 VIII
表目錄 XIII
圖目錄 XIII
第1章 簡介 1
1-1研究動機 1
1-2奈米球自組裝排列技術 2
1-2.1 奈米球自組裝排列機制 2
1-2.2奈米球自組裝排列裝置 3
1-2.3奈米網製程 4
1-3矽奈米線場效應電晶體 7
1-3.1矽奈米線場效應電晶體製程 7
1-3.2雜質摻雜 8
1-3.3金氧半場效應電晶體與奈米線場效應電晶體應用於感測器 9
1-3.4矽奈米線場效應電晶體感測DNA 13
1-3.5矽奈米線場效應電晶體感測PH值 15
1-4奈米球鏡微影術 16
1-4.1奈米球鏡微影術原理 16
1-4.2奈米球鏡微影術製備之結構與應用 19
1-5 表面電漿原理 24
1-5.1 表面電漿共振原理 24
1-5.2 侷域性表面電漿共振 27
1-5.3侷域性表面電漿共振之感測應用 28
1-6 結論 31
第2章 實驗儀器與光罩設計 32
2-1製程儀器 32
2-1.1奈米球溶液與其自組裝排列裝置 32
2-1.2光罩對準曝光機(Mask Aligner) 34
2-1.3電漿蝕刻機 37
2-1.4高真空電子槍蒸鍍機 39
2-1.5高溫爐管 40
2-1.6感應耦合式電漿蝕刻系統 40
2-1.7 FE手持式紫外線燈 41
2-2量測儀器 42
2-2.1場發射掃描式電子顯微鏡 42
2-2.2霍爾量測 43
2-2.3電性量測系統 44
2-2.4分光光譜儀 45
2-3光罩設計 46
2-3.1陣列型元件光罩設計 46
2-3.2感測型元件光罩設計 48
第3章 奈米球鏡微影術-非對稱光源 49
3-1 奈米球鏡微影術 49
3-1.1 奈米球鏡微影術製程與球鏡聚焦非對稱光源模擬 49
3-1.2 微影製程參數對奈米光阻洞陣列之影響 50
3-2 旋轉斜向蒸鍍製程 52
3-2.1 旋轉斜向蒸鍍製程架構 52
3-2.2旋轉斜向蒸鍍製程之金屬網Free-Standing 應用 54
3-3 非對稱光源多次曝光之應用 57
3-3.1 平移傾角三次曝光-錯位型陣列結構 57
第4章 矽奈米網場效應電晶體的製作與分析 59
4-1 無網狀結構場效應電晶體 59
4-1.1 製程方法 59
4-1.2 結構分析 60
4-1.3 不同腰身寬度之兩端電性分析 61
4-1.4 不同腰身寬度之三端電性分析 62
4-2 陣列型矽奈米網場效應電晶體 71
4-2.1 製程方法 71
4-2.2 結構分析 72
4-2.3不同奈米網長寬比之電性分析 73
4-3 感測型矽奈米網場效應電晶體 92
4-3.1 製程方法 92
4-3.2 結構分析 93
4-3.3 不同奈米網最小寬度之電性分析 94
4-4 總結 102
第5章 結論與未來展望 104
5-1 結論 104
5-1-1 奈米球鏡微影術-非對稱光源 104
5-1-2 矽奈米網場效應電晶體 104
5-2 未來展望 105
參考文獻 107
參考文獻 [1]N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayamat (1992), “ Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates.”, Langmuir, vol. 8, no. 12, pp. 3183–3190.
[2]A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. Van Duyne (2004), “Nanosphere Lithography : Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy.”, Langmuir, vol. 20, no. 16, pp. 6927–6931.
[3]A. J. Haes, C. L. Haynes, A. D. Mcfarland, and G. C. Schatz (2005), “Plasmonic Materials for Surface-Enhanced Sensing and Spectrosopy.”, MRS BULLETIN, vol. 30, no. May.
[4]A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov (2011), “Laser Fabrication of Large-Scale Nanoparticle Arrays for Sensing Applications.”, ACSNANO, vol. 5, no. 6, pp. 4843–4849.
[5]L. S. Live and O. R. Bolduc (2010), “Propagating Surface Plasmon Resonance on Microhole Arrays.” , Analytical Chemistry, vol. 82, no. 9, pp. 3780–3787.
[6]Kuan-I Chen, Bor-Ran Li, Yit-Tsong Chen (2011), “Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation.”, Nano Today, vol. 6, Issue 2, pp. 131–154.
[7]S. H. Yeong, M. P. Srinivasan, Benjamin Colombeau, Lap Chan, Ramam Akkipeddi, Charlotte T. M. Kwok, Ramakrishnan Vaidyanathan, and Edmund G. Seebauer (2007), “Defect engineering by surface chemical state in boron-doped preamorphized silicon.”, Applied Physics Letters, Vol. 91, Issue 10, pp.102-112.
[8]施敏 原著,黃調元 譯(2002), “半導體元件物理與製作技術(第二版) ”,交大出版社。
[9]C. M. L. Brian P. Timko, Tzahi Cohen-Karni, Quan Qing, Bozhi Tian (2010), “Design and Implementation of unctional Nanoelectronic Interfaces With Biomolecules, Cells, and Tissue Using Nanowire Device Arrays.”, IEEE Transactions on Nanotechnology, vol. 9, no. 3, pp. 269–280.
[10]Y. Cui, Q. Wei, H. Park, and C. M. Lieber (2001), “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species.”, Science, vol. 293, no. 5533, pp. 1289–92.
[11]F. Patolsky, G. Zheng and C. M. Lieber(2006), “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species.”, Nature Protocols, vol. 1, no. 4, pp. 1711–1724.
[12]X. Liang and S. Y. Chou (2008), “Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis.”, Nano Letters, vol. 8, no. 5, pp. 1472–1476.
[13]M. C. Lin, C. J. Chu, L. C. Tsai, H. Y. Lin, C. S. Wu, Y. P. Wu, Y. N. Wu, D. B. Shieh, Y. W. Su, and C. D. Chen (2007), “Control and detection of organosilane polarization on nanowire field-effect transistors.”, Nano Letters, vol. 7, no. 12, pp. 3656–3661.
[14]Guo-Jun Zhang, Min Joon Huang (2010), “Highly sensitive and reversible silicon nanowire biosensor to study nuclear hormone receptor protein and response element DNA interactions.” , Biosensors and Bioelectronics, vol. 26, no. 2, pp. 365–370 .
[15]S.-P. Lin, C.-Y. Pan, K.-C. Tseng, M.-C. Lin, C.-D. Chen, C.-C. Tsai, S.-H. Yu, Y.-C. Sun, T.-W. Lin, and Y.-T. Chen (2009), “A reversible surface functionalized nanowire transistor to study protein-protein interactions.”, Nano Today, vol. 4, no. 3, pp. 235–243.
[16]Hou-Yu Chen, Chia-Yi Lin, Min-Cheng Chen, Chien-Chao Huang and Chao-Hsin Chien (2011),“Fabrication of High-Sensitivity Polycrystalline Silicon Nanowire Field-Effect Transistor pH Sensor Using Conventional Complementary Metal–Oxide–Semiconductor Technology.” JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 50, no. 4.
[17]Jong-in Hahm and Charles M. Lieber (2004), “Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors.”, Nano Letters, vol. 4, no.1, pp.51-54.
[18]Shu-Ping Lin, Tien-Yin Chi, Tung-Yen Lai and Mao-Chen Liu (2012), “Investigation into the Effect of Varied Functional Biointerfaces on Silicon Nanowire MOSFETs.”, Sensors, 16867-16878.
[19]Yun-Chorng Chang, Hsin-Chan Chung, Sih-Chen Lu and Tzung-Fang Guo (2013), “A large-scale sub-100 nm Au nanodisk array fabricated using nanospherical-lens lithography: a low-cost localized surface plasmon resonance sensor.” , Nanotechnology, vol. 24,no. 9, pp.095302.
[20]Wei Wu, Dibyendu Dey, Omer G. Memis, Alex Katsnelson and Hooman Mohseni (2007), “A Novel Self-aligned and Maskless Process for Formation of Highly Uniform Arrays of Nanoholes and Nanopillars.”, Nanotechnology, vol.18, no.48, pp.485302.
[21]Yun-Chorng Chang, Sih-Chen Lu, Hsin-Chan Chung, Shih-Ming Wang, Tzung-Da Tsai and Tzung-Fang Guo (2013), “High-Throughput Nanofabrication of Infra-red and Chiral Metamaterials using Nanospherical-Lens Lithography.”, SCIENTIFIC REPORTS, 3:3339, DOI:10.1038,srep0339.
[22]吳民耀、劉威志(2006),「表面電漿子理論與模擬」,物理雙月刊,vol. 二十八卷二期,pp.486-496。
[23]邱國斌、蔡定平(2006),「金屬表面電漿簡介」, 物理雙月刊,vol. 二十八卷二期,pp.472-485。
[24]P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego -Calama, S. H. Brongersma and J. Gomez Rivas (2011), “Universal Scaling of the Figure of Merit of Plasmonic Sensors.”, ACSNANO, vol. 5, no. 6, pp. 5151–5157.
[25]曾重賓(2010),「氧電漿輔助奈米球微影術之研究與應用」,國立成功大學光電科學與工程研究所碩士論文。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw