進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2807201510082800
論文名稱(中文) 普魯士藍修飾石墨烯/氧化銦錫電極發展成過氧化氫感測器探討
論文名稱(英文) Study on Hydrogen Peroxide Sensor Based on Prussian Blue Modified Graphene/ Indium-Tin Oxide Substrate
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 103
學期 2
出版年 104
研究生(中文) 曾偉玲
研究生(英文) Wei-Ling Zeng
學號 P86024213
學位類別 碩士
語文別 英文
論文頁數 66頁
口試委員 指導教授-張憲彰
口試委員-吳靖宙
口試委員-陳密
口試委員-莊漢聲
口試委員-張景裕
中文關鍵字 普魯士藍  石墨烯  過氧化氫檢測 
英文關鍵字 Prussian blue  Graphene  Hydrogen peroxide sensor 
學科別分類
中文摘要 石墨烯由於其獨特的結構及特性成為目前熱門的材料之一。相似的結構物包括例如奈米碳管以及二維的平面碳材料如氧化還原石墨烯,因為具有高導電性質和催化效果,目前被大量使用於電化學檢測領域中。本研究嘗試使用石墨烯材料,製程上以化學氣相沉積法並以銅箔作為催化劑,生成單層、少缺陷之連續石墨烯薄層,再濕轉印至氧化銦錫 (ITO)導電玻璃上。利用此複合物作為工作電極應用於電化學系統中。
過氧化氫是一種基礎並常見之電活性物質,時常作為電化學檢測之目標物,其應用範圍包含工業上試劑之使用與汙染源監測、食品中必需檢驗項目與生物性代謝指標。目前有許多材料例如無機金屬粒子、奈米碳材或有機物之酵素與活性中心蛋白質等,均被引入過氧化氫檢測系統中作為特異性辨識元件,以期望降低過氧化氫反應之過電壓並增加催化性能。其中,普魯士藍物質被視為無機物中催化效果極佳的人工酵素,且適合應用於定電位量測系統。本研究使用普魯士藍粒子修飾單層石墨烯ITO電極,並嘗試建立此一透明且有效之過氧化氫量測平台,最終樣本達到線性範圍6.6 μM~2.8 mM,檢測極限為3.7 μM (S/N=3)。
英文摘要 Graphene is one of the most popular materials because of its unique structure and properties. There are many kinds of them and their analogue which was used in electrochemical sensing fields already for the purpose of the improvement of the conductivity and catalytic ability. It is an attempt to establish a sensing platform by using a defect-less, single layer and continues graphene fabricated by chemical vapor deposition with copper foil as a catalyst and is transferred on a transparent and conductive indium-tin-oxide coated glass. Hydrogen peroxide is a basal electroactive matter as a sensing target due to their widely application in industry and metabolism monitor. Numerous kinds of materials enter this field mentioned above independently or coordinately for electrochemical detection in order to lower the over-potential on interface of solid electrode such as organic and inorganic elements. The effective range is commonly thought to be from μM to mM, which is determined by the application. The Prussian blue material is called as an ‘artificial enzymes’ because of its excellent catalytic ability toward hydrogen peroxide. The reaction activity is thought to be merely slightly smaller than organic enzyme base one and is suitable for amperometric measurement.
In this study, we used the Prussian blue modified graphene based electrode to develop a transparent and effective sensing for hydrogen peroxide detection. This study has successfully developed a hydrogen peroxide sensor by simply modifying PB and reached the linear range from 6.6 μM to 2.8 mM and the limit of detection for 3.7 μM (S/N=3).
論文目次 Contents
Abstract i
摘要 ii
誌謝 iii
List of Figures vi
List of Tables ix
List of Abbreviations and Denotations x
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Biosensors 2
1.2.1 Composition of Biosensor 3
1.2.2 Hydrogen Peroxide Sensor 4
1.3 Electrochemical Methods for Detection 6
1.3.1 Cyclic Voltammetry Method 7
1.3.2 Amperometric Method for Detection 8
1.4 Graphene Material 8
1.4.1 Graphene Related Materials Comparison 9
1.4.2 Graphene Application in Electrochemical Sensor 13
1.5 Prussian Blue Material 16
1.5.1 Prussian Blue Application in Electrochemical Sensor 17
1.5.2 Methods of Prussian Blue Deposition 20
1.5.3 Stabilization of Prussian Blue Modified Electrode 23
1.6 Research Framework 24
Chapter 2 Materials and Methods 25
2.1 Detergents and Instruments 25
2.1.1. Chemical Reagents 25
2.1.2 Instruments 26
2.1.3 Buffer and Solutions 26
2.2 Electrode Modification and Stabilization 27
2.2.1 Prussian Blue Structure Transformation 27
2.2.2 Nickel Ions Substitute 27
2.3 Three Electrode System 28
Chapter 3 Results and Discussion 30
3.1 Electrochemical Property of the Graphene Based Substrate 30
3.1.1 CV Characteristic for Graphene Based Electrode 30
3.1.2 Response toward Common Electroactive Small Molecular 32
3.1.3 Procedure of Prussian Blue Deposition 38
3.2 The Examination of Modified Electrode 40
3.2.1 CV Characteristic for Surface Modification 40
3.2.2 Variation among Electrodes for Deposition 41
3.2.3 Effect of Graphene in Deposition 42
3.2.4 Surface Examination 44
3.3 The Stability of the Modified Electrode 46
3.3.1 Cyclic Voltammetry Test for Stability 46
3.3.2 Cyclic Voltammetry Test 49
3.4 Hydrogen Peroxide Measurement 50
3.4.1 Selection of Operating Potential 50
3.4.2 Continuous Injection and Amperometric Measurement 52
3.5 Other Test of PB/Graphene/ITO Electrode 54
3.5.1 pH Effect on the Modified Electrode 54
3.5.2 Interference Test 55
3.5.3 Long Term Storage 56
Chapter 4 Conclusions and Future Prospective 58
Acknowledgements 59
References 60
Curriculum Vitae 66
參考文獻 [1] Kirsch J, Siltanen C, Zhou Q, Revzin A, Simonian A. Biosensor technology: recent advances in threat agent detection and medicine. Chemical Society Reviews 2013;42:8733-68.
[2] Mohanty SP, Kougianos E. Biosensors: A tutorial review. Potentials, IEEE 2006;25:35-40.
[3] Scandurra G, Arena A, Ciofi C, Saitta G, et al. Electrical characterization and hydrogen peroxide sensing properties of gold/nafion: polypyrrole/MWCNTs electrochemical devices. Sensors 2013;13:3878-88.
[4] Ahammad AJS, et al. Hydrogen peroxide biosensors based on horseradish peroxidase and hemoglobin. Journal of Biosens Bioelectron 2013;S:9.
[5] Chen W, Cai S, Ren Q-Q, Wen W, Zhao Y-D, et al. Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 2012;137:49-58.
[6] Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y, et al. Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 2010;22:1027-36.
[7] Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL. Graphene for electrochemical sensing and biosensing. Trends in Analytical Chemistry 2010;29:954-65.
[8] Pumera M, et al. Electrochemistry of graphene, graphene oxide and other graphenoids: review. Electrochemistry Communications 2013;36:14-8.
[9] Chua CK, Pumera M. Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chemical Society Reviews 2014;43:291-312.
[10] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007;45:1558-65.
[11] Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chemical Society Reviews 2010;39:228-40.
[12] Valota AT, Kinloch IA, Novoselov KS, Casiraghi C, Eckmann A, Hill EW, et al. Electrochemical behavior of monolayer and bilayer graphene. ACS Nano 2011;5:8809-15.
[13] Brownson DAC, Banks CE. The electrochemistry of CVD graphene: progress and prospects. Physical Chemistry Chemical Physics 2012;14:8264-81.
[14] Kampouris DK, Banks CE. Exploring the physicoelectrochemical properties of graphene. Chemical Communications 2010;46:8986-8.
[15] Goh MS, Pumera M. et al. Multilayer graphene nanoribbons exhibit larger capacitance than their few-layer and single-layer graphene counterparts. Electrochemistry Communications 2010;12:1375-7.
[16] Goh MS, Pumera M, et al. The electrochemical response of graphene sheets is independent of the number of layers from a single graphene sheet to multilayer stacked graphene platelets. Chemistry An Asian Journal 2010;5:2355-7.
[17] Brownson DAC, Banks CE. CVD graphene electrochemistry: the role of graphitic islands. Physical Chemistry Chemical Physics 2011;13:15825-8.
[18] Lim CX, Hoh HY, Ang PK, Loh KP. Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: an insight into the role of oxygenated defects. Analytical Chemistry 2010;82:7387-93.
[19] Keeley GP, McEvoy N, Nolan H, Holzinger M, Cosnier S, Duesberg GS. Electroanalytical sensing properties of pristine and functionalized multilayer graphene. Chemistry of Materials 2014;26:1807-12.
[20] Li X, Cai W, Colombo L, Ruoff RS. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Letters 2009;9:4268-72.
[21] Brownson DAC, Gomez-Mingot M, Banks CE. CVD graphene electrochemistry: biologically relevant molecules. Physical Chemistry Chemical Physics 2011;13:20284-8.
[22] Lv X, Weng J. Ternary composite of hemin, gold nanoparticles and graphene for highly efficient decomposition of hydrogen peroxide. Scientific Reports 2013;3:3285.
[23] Yin PT, Kim T-H, Choi J-W, Lee K-B. et al. Prospects for graphene nanoparticle based hybrid sensors. Physical Chemistry Chemical Physics 2013;15:12785-99.
[24] Shi Y, Kim KK, Reina A, Hofmann M, Li L-J, Kong J. et al. Work function engineering of graphene electrode via chemical doping. ACS Nano 2010;4:2689-94.
[25] Ki Kang K, Alfonso R, Yumeng S, Hyesung P, Lain-Jong L, Young Hee L, et al. Enhancing the conductivity of transparent graphene films via doping. Nanotechnology 2010;21:285205.
[26] Cheng C-E, Lin C-Y, Chang H-Y, Huang C-H, Lin H-Y, Chen C-H, et al. Surface-enhanced Raman scattering of graphene with photo assisted synthesized gold nanoparticles. Optics Express 2013;21:6547-54.
[27] Huh S, Park J, Kim KS, Hong BH, Kim SB. Selective n-type doping of graphene by photo-patterned gold nanoparticles. ACS Nano 2011;5:3639-44.
[28] He S, Liu K-K, Su S, Yan J, Mao X, Wang D, et al. Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection. Analytical Chemistry 2012;84:4622-7.
[29] Dubuisson E, Yang Z, Loh KP. Optimizing label-free DNA electrical detection on graphene platform. Analytical Chemistry 2011;83:2452-60.
[30] Zhang Y, Bai X, Wang X, Shiu K-K, Zhu Y, Jiang H. Highly sensitive graphene–Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection. Analytical Chemistry 2014;86:9459-65.
[31] Zhang Y, Liu S, Wang L, Qin X, Tian J, Lu W, et al. One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing. RSC Advances 2012;2:538-45.
[32] Jeon K-J, Lee Z. Size-dependent interaction of Au nanoparticles and graphene sheet. Chemical Communications 2011;47:3610-2.
[33] Lee J, Novoselov KS, Shin HS, et al. Interaction between metal and graphene: dependence on the layer number of graphene. ACS Nano 2010;5:608-12.
[34] Gutés A, Carraro C, Maboudian R, et al. Single-layer CVD-grown graphene decorated with metal nanoparticles as a promising biosensing platform. Biosensors and Bioelectronics 2012;33:56-9.
[35] Ricci F, Palleschi G, et al. Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrodes. Biosensors and Bioelectronics 2005;21:389-407.
[36] Ryan Hazen RMS, Kasem K. Kasem. Electrochemistry in thin solid films of Prussian blue: a model demonstration of reversible behavior. American Journal of Undergraduate Research 2003;2:27-34.
[37] Itaya. K, et al. Electrochemistry of Prussian blue modified electrodes: an electrochemical preparation method. Journal of Electrochemistry 1982;129:1498-500.
[38] Karyakin AA. Prussian blue and its analogues: electrochemistry and analytical applications. Electroanalysis 2001;13:813-9.
[39] Karyakin AA, Gitelmacher OV, Karyakina EE, et al. Prussian blue-based first-generation biosensor: a sensitive amperometric electrode for glucose. Analytical Chemistry 1995;67:2419-23.
[40] Karyakin AA, Karyakina EE. Prussian blue-based `artificial peroxidase' as a transducer for hydrogen peroxide detection: application to biosensors. Sensors and Actuators B: Chemical 1999;57:268-73.
[41] Haghighi B, Varma S, Alizadeh Sh FM, Yigzaw Y, Gorton L. Prussian blue modified glassy carbon electrodes - study on operational stability and its application as a sucrose biosensor. Talanta 2004;64:3-12.
[42] Ricci F, Amine A, Palleschi G, Moscone D. Prussian blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosensors and Bioelectronics 2003;18:165-74.
[43] Moscone D, D'Ottavi D, Compagnone D, Palleschi G, Amine A. Construction and analytical characterization of Prussian blue-based carbon paste electrodes and their assembly as oxidase enzyme sensors. Analytical Chemistry 2001;73:2529-35.
[44] Garjonyte R, Malinauskas A. Operational stability of amperometric hydrogen peroxide sensors, based on ferrous and copper hexacyanoferrates. Sensors and Actuators B: Chemical 1999;56:93-7.
[45] Cai C-X, Ju H-X, Chen H-Y. Cobalt hexacyanoferrate modified microband gold electrode and its electrocatalytic activity for oxidation of NADH. Journal of Electroanalytical Chemistry 1995;397:185-90.
[46] Zhai J, Zhai Y, Wen D, Dong S. Prussian blue/multiwalled carbon nanotube hybrids: synthesis, assembly and electrochemical behavior. Electroanalysis 2009;21:2207-12.
[47] Cinti S, Arduini F, Moscone D, Palleschi G, Killard A. Development of a hydrogen peroxide sensor based on screen-printed electrodes modified with inkjet-printed Prussian blue nanoparticles. Sensors 2014;14:14222-34.
[48] Jin E, Lu X, Cui L, Chao D, Wang C. Fabrication of graphene/prussian blue composite nanosheets and their electrocatalytic reduction of H2O2. Electrochimica Acta 2010;55:7230-4.
[49] Ricci F, Amine A, Tuta CS, Ciucu AA, Lucarelli F, Palleschi G, et al. Prussian blue and enzyme bulk-modified screen-printed electrodes for hydrogen peroxide and glucose determination with improved storage and operational stability. Analytica Chimica Acta 2003;485:111-20.
[50] Ricci F, Gonçalves C, Amine A, Gorton L, Palleschi G, Moscone D, et al. Electroanalytical study of Prussian blue modified glassy carbon paste electrodes. Electroanalysis 2003;15:1204-11.
[51] Yang J-H, Myoung N, Hong H-G. Facile and controllable synthesis of Prussian blue on chitosan-functionalized graphene nanosheets for the electrochemical detection of hydrogen peroxide. Electrochimica Acta 2012;81:37-43.
[52] In-Je Y, Ju-Ho K, Kang CJ, Choi YJ, Kisay L, Yong-Sang K. A novel electrochemical detector using Prussian blue modified indium tin oxide electrode. Japanese Journal of Applied Physics 2006;45:438.
[53] Li S-J, Du J-M, Shi Y-F, Li W-J, Liu S-R. Functionalization of graphene with Prussian blue and its application for amperometric sensing of H2O2. Journal of Solid State Electrochemistry 2012;16:2235-41.
[54] Razmi H, Jabbari M, Mohammad-Rezaei R. Prussian blue nanoparticles self assembling on electrochemically reduced graphene oxide modified GC electrode for sensitive hydrogen peroxide detection. Journal of the Chinese Chemical Society 2013;60:1484-90.
[55] Jaffari SA, Turner APF. Novel hexacyanoferrate(III) modified graphite disc electrodes and their application in enzyme electrodes—Part I. Biosensors and Bioelectronics 1997;12:1-9.
[56] Yao Y, Bai X, Shiu K-K. Spontaneous deposition of Prussian blue on multi-walled carbon nanotubes and the application in an amperometric biosensor. Nanomaterials 2012;2:428-44.
[57] Keihan AH, Sajjadi S. Improvement of the electrochemical and electrocatalytic behavior of Prussian blue/carbon nanotubes composite via ionic liquid treatment. Electrochimica Acta 2013;113:803-9.
[58] Gong H, Sun M, Fan R, Qian L. One-step preparation of a composite consisting of graphene oxide, Prussian blue and chitosan for electrochemical sensing of hydrogen peroxide. Microchimica Acta 2013;180:295-301.
[59] Cao L, Liu Y, Zhang B, Lu L. In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide: facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 Reduction. ACS Applied Materials & Interfaces 2010;2:2339-46.
[60] Iveković D, Trbić HV, Peter R, Petravić M, Čeh M, Pihlar B. Enhancement of stability of Prussian blue thin films by electrochemical insertion of Ni2+ ions: a stable electrocatalytic sensing of H2O2 in mild alkaline media. Electrochimica Acta 2012;78:452-8.
[61] Wang Z, Yang H, Gao B, Tong Y, Zhang X, Su L. Stability improvement of Prussian blue in nonacidic solutions via an electrochemical post-treatment method and the shape evolution of Prussian blue from nanospheres to nanocubes. Analyst 2014;139:1127-33.
[62] Hu G, Guo Y, Shao S. Simultaneous determination of dopamine and ascorbic acid using the nano-gold self-assembled glassy carbon electrode. Electroanalysis 2009;21:1200-6.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-11起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw