進階搜尋


下載電子全文  
系統識別號 U0026-2807201509142700
論文名稱(中文) 聚吡咯/金/氧化銫鎢複合奈米粒子之製備與生醫應用
論文名稱(英文) Fabrication and biomedical application of polypyrrole/Au/CsWO3 composite nanoparticles
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 103
學期 2
出版年 104
研究生(中文) 陳思妤
研究生(英文) Ssu-Yu Chen
學號 n36024628
學位類別 碩士
語文別 中文
論文頁數 98頁
口試委員 指導教授-陳東煌
口試委員-陳美瑾
口試委員-江禎立
口試委員-廖敏宏
中文關鍵字 氧化銫鎢    聚吡咯  近紅外光光熱治療  表面增強拉曼散射顯影 
英文關鍵字 cesium tungsten oxide  gold  polypyrrole  near-infrared photothermal therapy  surface-enhanced Raman scattering imaging 
學科別分類
中文摘要 本論文係有關聚吡咯/金/氧化銫鎢複合奈米粒子之製備及其近紅外光光熱轉換與表面增強拉曼散射(SERS)特性在癌細胞光熱治療與顯影上的應用。首先以濕式研磨法製備氧化銫鎢(CsWO3)奈米粒子,並以溶凝膠法在其表面被覆二氧化矽奈米殼層製得CsWO3@SiO2奈米粒子,接著再以3-氨丙基三乙氧基矽烷(APTES)將其表面氨基化製得CsWO3@SiO2(-NH2)奈米粒子。其次,藉由靜電作用力將其與由檸檬酸鈉還原法合成之金奈米粒子複合製得CsWO3@SiO2/Au複合奈米粒子。最後表面再以簡易得吡咯氧化聚合被覆聚吡咯(PPy),然後修飾聚乙烯吡咯烷酮(PVP),即得聚吡咯/金/氧化銫鎢(CsWO3@SiO2/Au/PPy(-PVP))複合奈米粒子。以穿透式電子顯微鏡、動態光散射儀、界面電位儀、傅立葉轉換紅外光光譜儀、紫外光/可見光/近紅外光光譜儀及拉曼光譜儀分析奈米粒子之形態與粒徑、界面電位、表面官能基、及光學特性,確認已成功製得具有良好的水中分散性及近紅外光光熱轉換與SERS特性的聚吡咯/金/氧化銫鎢複合奈米粒子。其中,近紅外光光熱轉換性能主要來自氧化銫鎢與金奈米粒子,而SERS特性則由拉曼訊號被金奈米粒子增強之聚吡咯所貢獻。以HeLa癌細胞進行測試,結果顯示聚吡咯/金/氧化銫鎢複合奈米粒子並無明顯的細胞毒性;然而在近紅外光照射後,含有此複合奈米粒子之癌細胞存活率明顯隨照射時間增長而降低,證實其確實具有近紅外光光熱治療的功能。此外,藉著其所具有的SERS 特性,位於癌細胞中與豬皮中之聚吡咯/金/氧化銫鎢複合奈米粒子可分別以顯微拉曼光譜儀與一般拉曼光譜儀測得,證實其亦具有SERS顯影的功能。據此,本研究所開發之聚吡咯/金/氧化銫鎢複合奈米粒子確實兼具近紅外光光熱治療與生物顯影的功能。
英文摘要 This thesis concerns the preparation of polypyrrole/Au/cesium tungsten oxide composite nanoparticles and the applications of their near infrared (NIR) photothermal conversion and surface-enhanced Raman scattering (SERS) properties in the photothermal therapy and imaging of cancer cells. Firstly, cesium tungsten oxide (CsWO3) nanoparticles were prepared by a wet-milling process and then coated with the silica shell with sol-gel method to yield the CsWO3@SiO2 nanoparticles. Next, their surface was amino-functionalized with 3-aminopropyl)triethoxysilane (APTES) to from the CsWO3@SiO2(-NH2) nanoparticles, and then conjugated with the Au nanoparticles synthesized by citrate reduction method via the electrostatic interaction to yield the CsWO3@SiO2/Au composite nanoparticles. Finally, their surface was further coated by polypyrrole (PPy) via a facile oxidative polymerization of pyrrole, and then modified with polyvinylpyrrolidone (PVP) to obtain the CsWO3@SiO2/Au/PPy(-PVP) composite nanoparticles. By TEM, DLS, zeta potential, FT-IR, UV/VIS/IR and Raman analyses, the nanoparticles’ morphologies and sizes, zeta potentials, surface functional groups, and optical properties were characterized to demonstrated that the CsWO3@SiO2/Au/PPy(-PVP) composite nanoparticles with good dispersity in water and NIR photothermal conversion and SERS properties have been successfully fabricated. The NIR photothermal conversion property was mainly contributed by CsWO3 and Au nanoparticles; while the SERS property was due to the polypyrrole with Raman signal enhanced by Au nanoparticles. By a HeLa cancer cell line, it was revealed that CsWO3@SiO2/Au/PPy(-PVP) composite nanoparticles had no significant cytotoxicity. However, under NIR irradiation, their presence led to the remarkable decrease of cell viability with increasing the irradiation time, revealing their capability in NIR photothermal therapy. Furthermore, via their SERS property, the CsWO3@SiO2/Au/PPy(-PVP) composite nanoparticles in cancer cells and porcine skin could be detected using the micro and ordinary Raman spectrometers, respectively, demonstrating their capability in SERS imaging. Accordingly, the CsWO3@SiO2/Au/PPy(-PVP) composite nanoparticles developed in this study indeed possessed both the functions of NIR photothermal therapy and bio-imaging.
論文目次 總目錄

中文摘要 I
Abstract III
Extended Abstract V
致謝 IX
總目錄 XI
表目錄 XIV
圖目錄 XV

第一章 緒論 1
1.1 近紅外光光熱治療 1
1.1.1 光熱治療(photothermal therapy) 1
1.1.2 光熱轉換材料 2
1.1.3 光熱治療於癌細胞方面之研究 3
1.2 氧化銫鎢之簡介 6
1.3 金奈米材料之簡介 10
1.4 導電高分子材料之簡介 13
1.5 表面增強拉曼散射顯影(SERS imaging) 15
1.6 研究動機與架構 18
第二章 基礎理論 20
2.1 光熱轉換效應 20
2.1.1 近紅外光光熱轉換原理 20
2.1.2 光熱轉換效率計算 21
2.2 金屬表面電漿共振效應 25
2.2.1 表面電漿共振概論 25
2.2.2 理論推導 28
2.2.3 氧化銫鎢之表面電漿共振效應 30
第三章 實驗方法 31
3.1 實驗藥品、材料及儀器 31
3.1.1 實驗藥品 31
3.1.2 實驗細胞株 33
3.1.3 儀器設備 33
3.1.4 實驗材料 35
3.2 材料製備方法 36
3.2.1 二氧化矽殼層被覆氧化銫鎢奈米粒子(CsWO3@SiO2)之製備 36
3.2.2 表面改質氨基二氧化矽殼層被覆氧化銫鎢奈米粒子(CsWO3@SiO2(-NH2))之製備 38
3.2.3 金奈米粒子(Au NPs)之製備 39
3.2.4 金奈米粒子沉積表面氨基改質之二氧化矽殼層被覆氧化銫鎢奈米粒子(CsWO3@SiO2/Au)之製備 41
3.2.5 聚乙烯吡咯烷銅高分子/聚吡咯導電高分子修飾金奈米粒子沉積表面氨基改質之二氧化矽殼層被覆氧化銫鎢奈米粒子(CsWO3@SiO2/Au/PPy(-PVP))之製備 42
3.3 子宮頸癌細胞培養 43
3.3.1 細胞培養 43
3.3.2 細胞繼代 43
3.3.3 細胞解凍 43
3.3.4 細胞計數 44
3.4 性質測定與分析 45
3.5 細胞毒性測試 50
3.6 細胞光熱治療測試 51
3.7 SERS顯影測試 54
第四章 結果與討論 56
4.1 結構型態與表面特性 56
4.1.1 粒子型態與粒徑大小 56
4.1.2 鍵結型態分析 64
4.1.3 界面電位特性 67
4.1.4 光學特性分析 69
4.2 光熱轉換效應測試 71
4.3 細胞毒性與光熱治療測試 75
4.4 表面增強拉曼散射顯影 79
4.4.1 聚吡咯/金/氧化銫鎢複合奈米粒子之SERS特性 79
4.4.2 聚吡咯/金/氧化銫鎢複合奈米粒子之皮下顯影測試 80
4.4.3 聚吡咯/金/氧化銫鎢複合奈米粒子之癌細胞SERS顯影 82
第五章 總結論 84
參考文獻 87


參考文獻 [1] R. B. R. W. Habash, D. Krewski and H. T. Alhafid, Thermal therapy, part 1: an introduction to thermal therapy, Crit. Rev. Bioeng., 34, 459-489, 2006.
[2] D. Jaque, L. M. Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. M. Rodriguez, J. G. Sole, Nanoparticles for photothermal therapies, Nanoscale, 6, 9494-9530, 2014
[3] C. Guo, H. Yu, B. Feng, W. Gao, M. Yan, Z. Zhang, Y. Li, S. Liu, Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nm-laser-driven photothermal agent, Biomaterials, 52, 407-416, 2015
[4] H. Jo, H. Youn, S. Lee, C. Ban, Ultra-effective photothermal therapy for prostate cancer cells using dual aptamer-modified gold nanostars, J. Mater. Chem. B, 2, 4862-4867, 2014
[5] B. Wang, J. H. Wang, Q. Liu, H. Huang, M. Chen, K. Li, C. Li, X. F. Yu, P. K. Chu, Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies, Biomaterials, 35, 1954-1966, 2014.
[6] L. Jing, X. Liang, Z. Deng, S. Feng, X. Li, M. Huang, C. Li, Z. Dai, Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer, Biomaterials, 35, 5814-5821, 2014.
[7] L. Yang, Y. T. Tseng, G. Suo, L. Chen, J. Yu, W. J. Chiu, C. C. Huang, C. H. Lin, Photothermal therapeutic response of cancer cells to aptamer-gold nanoparticle-hybridized graphene oxide under NIR illumination, ACS Appl. Mater. Interfaces, 7, 5097-5106, 2015.
[8] M. Li, H. Yan, C. Teh, V. Korzh, Y. Zhao, NIR-triggered drug release from switchable rotaxane-functionalized silica-covered Au nanorods, Chem. Commun., 50, 9745-9748, 2014.
[9] A. K. Rengan, M. Jagtap, A. De, R. Banerjee, R. Srivastava, Multifunctional gold coated thermo-sensitive liposomes for multimodal imaging and photo-thermal therapy of breast cancer cells, Nanoscale, 6, 916-923, 2014.
[10] J. Li, Y. Hu, J. Yang, P. Wei, W. Sun, M. Shen, G. Zhang, X. Shi, Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors, Biomaterials, 38, 10-21, 2015.
[11] R. Vankayala, C. C. Lin, P. Kalluru, C. S. Chiang, K. C. Hwang, Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light, Biomaterials, 35, 5527-5538, 2014.
[12] X. Ye, H. Shi, X. He, K. Wang, D. Li, P. Qiu, Gold nanorod-seeded synthesis of Au@Ag/Au nanospheres with broad and intense near-infrared absorption for photothermal cancer therapy, J. Mater. Chem. B, 2, 3667-3673, 2014.
[13] M. Cheng, H. Wang, Z. Zhang, N. Li, X. Fang, S. Xu, Gold nanorod-embedded electrospun fibrous membrane as a photothermal therapy platform, ACS Appl. Mater. Interfaces, 6, 1569-1575, 2014.
[14] H. X. Xia, X. Q. Yang, J. T. Song, J. Chen, M. Z. Zhang, D. M. Yan, L. Zhang, M. Y. Qin, L. Y. Bai, Y. D. Zhao, Z. Y. Ma, Folic acid-conjugated silica-coated gold nanorods and quantum dots for dual-modality CT and fluorescence imaging and photothermal therapy, J. Mater. Chem. B, 2, 1945-1953, 2014.
[15] Z. M. Liu, B. G. Ye, M. Jin, H. L. Chen, H. Q. Zhong, X. P. Wang, Z. Y. Guo, Dye-free near-infrared surface-enhanced Raman scattering nanoprobes for bioimaging and high-performance photothermal cancer therapy, Nanoscale, 7, 6754-6761, 2015.
[16] F. Hu, Y. Zhang, G. Chen, C. Li, Q. Wang, Double-walled Au nanocage/SiO2 nanorattles: integrating SERS imaging, drug delivery and photothermal therapy, Small, 11, 985-993, 2015.
[17] M. Chen, S. Tang, Z. Guo, X. Wang, S. Mo, X. Huang, G. Liu, N. Zheng, Core-shell Pd@Au nanoplates as theranostic agents for in-vivo photoacoustic Imaging, CT imaging, and photothermal therapy, Adv. Mater., 26, 8210-8216, 2014.
[18] Y. Gao, Y. Li, Y. Wang, Y. Chen, J. Gu, W. Zhao, J. Ding, J. Shi, Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection, Small, 2015, 11, 77-83.
[19] N. M. Osman, Comparison between gold nanoparticles and conductive polymer nanoparticles used in photothermal therapy, ICEEE, 580-583, 2013.
[20] S. Liu, X. Ling, C. C. Zhou, J. Zhang, J. B. Huang, Y. Yan, Combining superior surface enhanced Raman scattering and photothermal conversion on one platform: a strategy of ill-defined gold nanoparticles, RSC Adv., 5, 27120-27125, 2015.
[21] P. Huang, J. Lin, W. Li, P. Rong, Z. Wang, S. Wang, X. Wang, X. Sun, M. Aronova, G. Niu, R. D. Leapman, Z. Nie, X. Chen, Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy, Angew. Chem. Int. Ed., 52, 13958-13964, 2013.
[22] G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide, Adv. Mater., 22, 505-509, 2010.
[23] L. Feng, X. Yang, X. Shi, X. Tan, R. Peng, J. Wang, Z. Liu, Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery, Small, 9, 1989-1997, 2013.
[24] H. Guo, M. Peng, Z. Zhu, L. Sun, Preparation of reduced graphene oxide by infrared irradiation induced photothermal reduction, Nanoscale, 5, 9040-9048, 2013.
[25] Z. Hu, F. Zhao, Y. Wang, Y. Huang, L. Chen, N. Li, J. Li, Z. Li, G. Yi, Facile fabrication of a C60-polydopamine-graphene nanohybrid for single light induced photothermal and photodynamic therapy, Chem. Commun., 50, 10815-10818, 2014.
[26] S. Z. Nergiz, N. Gandra, S. Tadepalli, S. Singamaneni, Multifunctional hybrid nanopatches of graphene oxide and gold nanostars for ultraefficient photothermal cancer therapy, ACS Appl. Mater. Interfaces, 6, 16395-16402, 2014.
[27] S. Y. Qin, J. Feng, L. Rong, H. Z. Jia, S. Chen, X. J. Liu, G. F. Luo, R. X. Zhuo, X. Z. Zhang, Theranostic GO-based nanohybrid for tumor induced imaging and potential combinational tumor therapy, Small, 10, 599-608, 2014.
[28] X. Shi, H. Gong, Y. Li, C. Wang, L. Cheng, Z. Liu, Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy, Biomaterials, 34, 4786-4793, 2013.
[29] X. Tu, Y. Ma, Y. Cao, J. Huang, M. Zhang, Z. Zhang, PEGylated carbon nanoparticles for efficient in vitro photothermal cancer therapy, J. Mater. Chem. B, 2, 2184, 2014.
[30] Y. W. Wang, Y. Y. Fu, Q. Peng, S. S. Guo, G. Liu, J. Li, H. H. Yang, G. N. Chen, Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging, J. Mater. Chem. B, 1, 5762-5767, 2013.
[31] G. Xu, S. Liu, H. Niu, W. Lv, R. a. Wu, Functionalized mesoporous carbon nanoparticles for targeted chemo-photothermal therapy of cancer cells under near-infrared irradiation, RSC Adv., 4, 33986-33997, 2014.
[32] X. Yan, H. Hu, J. Lin, A. J. Jin, G. Niu, S. Zhang, P. Huang, B. Shen, X. Chen, Optical and photoacoustic dual-modality imaging guided synergistic photodynamic/photothermal therapies, Nanoscale, 7, 2520-2526, 2015.
[33] K. Yang, L. Feng, X. Shi, Z. Liu, Nano-graphene in biomedicine: theranostic applications, Chem. Soc. Rev., 42, 530-547, 2013.
[34] A. Yuan, X. Qiu, X. Tang, W. Liu, J. Wu, Y. Hu, Self-assembled PEG-IR-780-C13 micelle as a targeting, safe and highly-effective photothermal agent for in vivo imaging and cancer therapy, Biomaterials, 51, 184-193, 2015.
[35] B. Li, K. Ye, Y. Zhang, J. Qin, R. Zou, K. Xu, X. Huang, Z. Xiao, W. Zhang, X. Lu, J. Hu, Photothermal theragnosis synergistic therapy based on bimetal sulphide nanocrystals rather than nanocomposites, Adv. Mater., 27, 1339-1345, 2015.
[36] L. Tan, Z. Wu, X. Wang, J. Sun, Facile synthesis of CuS mesostructures with high photothermal conversion efficiency, RSC Adv., 5, 35317-35324, 2015.
[37] T. Liu, C. Wang, W. Cui, H. Gong, C. Liang, X. Shi, Z. Li, B. Sun, Z. Liu, Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets, Nanoscale, 6, 11219-11225, 2014.
[38] L. Cheng, J. Liu, X. Gu, H. Gong, X. Shi, T. Liu, C. Wang, X. Wang, G. Liu, H. Xing, W. Bu, B. Sun, Z. Liu, PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy, Adv. Mater., 26, 1886-1893, 2014.
[39] Y. Yong, L. Zhou, Z. Gu, L. Yan, G. Tian, X. Zheng, X. Liu, X. Zhang, J. Shi, W. Cong, W. Yin, Y. Zhao, WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells, Nanoscale, 6, 10394-10403, 2014.
[40] Z. Chen, Q. Wang, H. Wang, L. Zhang, G. Song, L. Song, J. Hu, H. Wang, J. Liu, M. Zhu, D. Zhao, Ultrathin pegylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo, Adv. Mater., 25, 2095-2100, 2013.
[41] C. Guo, S. Yin, H. Yu, S. Liu, Q. Dong, T. Goto, Z. Zhang, Y. Li, T. Sato, Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infra-red absorption, Nanoscale, 5, 6469-6478, 2013.
[42] G. Liu, S. Wang, Y. Nie, X. Sun, Y. Zhang, Y. Tang, Electrostatic-induced synthesis of tungsten bronze nanostructures with excellent photo-to-thermal conversion behavior, J. Mater. Chem. A, 1, 10120-10129, 2013.
[43] J. Liu, J. Han, Z. Kang, R. Golamaully, N. Xu, H. Li, X. Han, In vivo near-infrared photothermal therapy and computed tomography imaging of cancer cells using novel tungsten-based theranostic probe, Nanoscale, 6, 5770-5776, 2014.
[44] T. M. Mattox, A. Bergerud, A. Agrawal, D. J. Milliron, Influence of shape on the surface plasmon resonance of tungsten bronze nanocrystals, Chem. Mater., 26, 1779-1784, 2014.
[45] G. Tian, X. Zhang, X. Zheng, W. Yin, L. Ruan, X. Liu, L. Zhou, L. Yan, S. Li, Z. Gu, Y. Zhao, Multifunctional RbxWO3 nanorods for simultaneous combined chemo-photothermal therapy and photoacoustic/CT imaging, Small, 10, 4160-4170, 2014.
[46] W. Xu, Z. Meng, N. Yu, Z. Chen, B. Sun, X. Jiang, M. Zhu, PEGylated CsxWO3 nanorods as an efficient and stable 915 nm-laser-driven photothermal agent against cancer cells, RSC Adv., 5, 7074-7082, 2014.
[47] M. Yan, H. Gu, Z. Liu, C. Guo, S. Liu, Effective near-infrared absorbent: ammonium tungsten bronze nanocubes, RSC Adv., 5, 967-973, 2015.
[48] Z. Zhou, B. Kong, C. Yu, X. Shi, M. Wang, W. Liu, Y. Sun, Y. Zhang, H. Yang, S. Yang, Tungsten oxide nanorods: an efficient nanoplatform for tumor CT imaging and photothermal therapy, Sci. Rep., 4, 3653, 2014.
[49] E. G. Ju, Z. H. Li, M. Li, K. Dong, J. S. Ren, X. G. Qu, Functional polypyrrole-silica composites as photothermal agents for targeted killing of bacteria, Chem. Commun., 49, 9048-9050, 2013.
[50] J. Yang, J. Choi, D. Bang, E. Kim, E. K. Lim, H. Park, J. S. Suh, K. Lee, K. H. Yoo, E. K. Kim, Y. M. Huh, S. Haam, Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells, Angew. Chem. Int. Ed., 50, 441-444, 2011.
[51] K. Yang, H. Xu, L. Cheng, C. Y. Sun, J. Wang, Z. Liu, In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles, Adv. Mater., 24, 5586-5592, 2012.
[52] Z. B. Zha, J. R. Wang, E. Z. Qu, S. H. Zhang, Y. S. Jin, S. M. Wang, Z. F. Dai, Polypyrrole hollow microspheres as echogenic photothermal agent for ultrasound imaging guided tumor ablation, Scientific Reports, 3, 2360, 2013.
[53] Y. Yuan, Z. Wang, P. Cai, J. Liu, L. D. Liao, M. Hong, X. Chen, N. Thakor, B. Liu, Conjugated polymer and drug co-encapsulated nanoparticles for chemo- and photo-thermal combination therapy with two-photon regulated fast drug release, Nanoscale, 7, 3067-3076, 2015.
[54] J. Zhou, Z. G. Lu, X. J. Zhu, X. J. Wang, Y. Liao, Z. F. Ma, F. Y. Li, NIR photothermal therapy using polyaniline nanoparticles, Biomaterials, 34, 9584-9592, 2013.
[55] H. Kim, R. Namgung, K. Singha, I. K. Oh, W. J. Kim, Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool, Bioconjug Chem., 22, 2558-2567, 2011.
[56] X. Ma, Q. Qu, Y. Zhao, Z. Luo, Y. Zhao, K. W. Ng, Y. Zhao, Graphene oxide wrapped gold nanoparticles for intracellular Raman imaging and drug delivery, J. Mater. Chem. B, 1, 6495-6500, 2013.
[57] S. Liu, A. C. T. Ko, W. Li, W. Zhong, M. Xing, NIR initiated and pH sensitive single-wall carbon nanotubes for doxorubicin intracellular delivery, J. Mater. Chem. B, 2, 1125-1135, 2014.
[58] X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano-graphene oxide for cellular imaging and drug delivery, Nano Res, 1, 203-212, 2008.
[59] E. Ju, Z. Li, Z. Liu, J. Ren, X. Qu, Near-infrared light-triggered drug-delivery vehicle for mitochondria-targeted chemo-photothermal therapy, ACS Appl. Mater. Interfaces, 6, 4364-4370, 2014.
[60] K. Park, Polysaccharide-based near-infrared fluorescence nanoprobes for cancer diagnosis, Quant Imaging Med Surg, 2, 106-113, 2012.
[61] M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, C. S. Yeh, Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy, ACS Nano, 7, 5330-5342, 2013.
[62] 曾賢德, 金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作, 物理雙月刊, 32, 127-135, 2010.
[63] A. F. Bagley, S. Hill, G. S. Rogers, S. N. Bhatia, Plasmonic photothermal heating of intraperitoneal tumors through the use of an Implanted near-infrared source, ACS Nano, 7, 8089-8097, 2013.
[64] E. H. Yu, K. Sundmacher, Enzyme electrodes for glucose oxidation prepared by electropolymerization of pyrrole, Process Saf. Environ. Prot., 85, 489-493, 2007.
[65] K. M. Ke, L. S. Lin, H. Liang, X. Chen, C. Han, J. Li, H. H. Yang, Polypyrrole nanoprobes with low non-specific protein adsorption for intracellular mRNA detection and photothermal therapy, Chem. Commun., 51, 6800-6803, 2015.
[66] K. M. Au, Z. H. Lu, S. J. Matcher, S. P. Armes, Polypyrrole nanoparticles: a potential optical coherence tomography contrast agent for cancer imaging, Adv. Mater., 23, 5792-5795, 2011.
[67] M. Lin, C. Guo, J. Li, D. Zhou, K. Liu, X. Zhang, T. Xu, H. Zhang, L. Wang, B. Yang, Polypyrrole-coated chainlike gold nanoparticle architectures with the 808 nm photothermal transduction efficiency up to 70%, ACS Appl. Mater. Interfaces, 6, 5860-5868, 2014.
[68] H. Kang, S. Jeong, Y. Park, J. Yim, B.-H. Jun, S. Kyeong, J.-K. Yang, G. Kim, S. Hong, L. P. Lee, J.-H. Kim, H.-Y. Lee, D. H. Jeong, Y.-S. Lee, Near-Infrared SERS Nanoprobes with Plasmonic Au/Ag Hollow-Shell Assemblies for In Vivo Multiplex Detection, Adv. Funct. Mater., 23, 3719-3727, 2013.
[69] Q. Liu, L. Wei, J. Wang, F. Peng, D. Luo, R. Cui, Y. Niu, X. Qin, Y. Liu, H. Sun, J. Yang, Y. Li, Cell imaging by graphene oxide based on surface enhanced Raman scattering, Nanoscale, 4, 7084-7089, 2012.
[70] S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Chen, Z. Cheng, E. S. Jang, NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites, Biomaterials, 35, 3309-3318, 2014.
[71] Z. M. Liu, Z. Y. Guo, H. Q. Zhong, X. C. Qin, M. M. Wan, B. W. Yang, Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging, Phys. Chem. Chem. Phys., 15, 2961-2966, 2013.
[72] J. W. Kang, P. T. So, R. R. Dasari, D. K. Lim, High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap, Nano Lett, 15, 1766-1772, 2015.
[73] M. Fleischmann, P. J. Hendra, Mcquilla.Aj, Raman-spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett., 26, 163-166, 1974.
[74] D. L. Jeanmaire, R. P. Vanduyne, Surface Raman spectroelectrochemistry: part 1. heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode, J. Electroanal. Chem., 84, 1-20, 1977.
[75] M. D. Porter, R. J. Lipert, L. M. Siperko, G. Wang, R. Narayanan, SERS as a bioassay platform: fundamentals, design, and applications, Chem. Soc. Rev., 37, 1001-1011, 2008.
[76] M. Vendrell, K. K. Maiti, K. Dhaliwal, Y. T. Chang, Surface-enhanced Raman scattering in cancer detection and imaging, Trends Biotechnol., 31, 249-257, 2013.
[77] H. J. Chen, L. Shao, T. A. Ming, Z. H. Sun, C. M. Zhao, B. C. Yang, J. F. Wang, Understanding the photothermal conversion efficiency of gold nanocrystals, Small, 6, 2272-2280, 2010.
[78] P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, Au nanoparticles target cancer, Nano Today, 2, 18-29, 2007.
[79] R. D. Fedorovich, A. G. Naumovets, P. M. Tomchuk, Electron and light emission from island metal films and generation of hot electrons in nanoparticles, Physics Reports, 328, 74-179, 2000.
[80] G. L. Fu, W. Liu, S. S. Feng, X. L. Yue, Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy, Chem. Commun., 48, 11567-11569, 2012.
[81] S. Link, Z. L. Wang, M. A. El-Sayed, Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition, J. Mater. Chem. B, 103, 3529-3533, 1999.
[82] K. A. Willets, R. P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem., 58, 267-297, 2007.
[83] K. C. Grabar, R. G. Freeman, M. B. Hommer, M. J. Natan, Preparation and characterization of Au Colloid Monolayers, Anal. Chem., 1995, 67, 735-743.
[84] J. G. Xue, C. G. Wang, Z. F. Ma, A facile method to prepare a series of SiO2@Au core/shell structured nanoparticles, Mater. Chem. Phys., 2007, 105, 419-425.
[85] C. L. Fang, K. Qian, J. Zhu, S. Wang, X. Lv, S. H. Yu, Monodisperse alpha-Fe2O3@SiO2@Au core/shell nanocomposite spheres: synthesis, characterization and properties, Nanotechnology, 2008, 19, 125601.
[86] I. Dojindo molecular technologies
[87] 賴柏宏, 多功能六硼化鑭複合粒子之製備與近紅外光光熱治療應用, 國立成功大學化學工程系碩士論文, 46-47, 2012.
[88] D. Malina, A. Sobczak-Kupiec, Z. Wzorek, Z. Kowalski, Silver nanoparticles synthesis with different concentrations of polyvinylpyrrolidone, Dig. J. Nanomater Bios., 7, 1527-1534, 2012.
[89] C. J. Chen, D. H. Chen, Preparation and near-infrared photothermal conversion property of cesium tungsten oxide nanoparticles, Nanoscale Res. Lett., 8, 57, 2013.
[90] Z. J. Wu, H. Xiang, T. Kim, M. S. Chun, K. Lee, Surface properties of submicrometer silica spheres modified with aminopropyltriethoxysilane and phenyltriethoxysilane, J. Colloid Interface Sci., 304, 119-124, 2006.
[91] S. V. Jadhav, D. S. Nikam, V. M. Khot, N. D. Thorat, M. R. Phadatare, R. S. Ningthoujam, A. B. Salunkhe, S. H. Pawar, Studies on colloidal stability of PVP-coated LSMO nanoparticles for magnetic fluid hyperthermia, New J. Chem., 37, 3121-3130, 2013.
[92] M. Choudhary, R. Ul Islam, M. J. Witcomb, K. Mallick, In situ generation of a high-performance Pd-polypyrrole composite with multi-functional catalytic properties, Dalton Trans., 43, 6396-6405, 2014.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-17起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw