進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2807201421575600
論文名稱(中文) 中空球狀矽酸鋰鐵之合成及其於鋰離子電池電極之應用
論文名稱(英文) Synthesis of Hollow Li2FeSiO4 Sphere Applied for Lithium-Ion Battery Electrode
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 杜泰然
研究生(英文) Tai-Ran Du
電子信箱 tyronedu@hotmail.com
學號 N36011251
學位類別 碩士
語文別 中文
論文頁數 71頁
口試委員 指導教授-郭炳林
口試委員-林弘萍
口試委員-羅介聰
口試委員-張家欽
口試委員-李桐進
中文關鍵字 矽酸鋰鐵  正極材料  負極材料 
英文關鍵字 Li2FeSiO4  Cathode  Anode 
學科別分類
中文摘要 本研究先使用混摻高分子為模板,以水玻璃為矽源縮合出尺寸在500~800 nm之間的中空球狀氧化矽球(SiO2),將此中空球狀氧化矽球與鋰鹽及鐵鹽以水-醇混合溶劑均勻混合後,再以不同氣體氛圍經模板法製備中空球狀矽酸鋰鐵(Li2FeSiO4),並以樹脂批覆,經高溫碳化後製備出Li2FeSiO4/C正極複合材料,最後由TGA測量披覆碳與Li2FeSiO4的重量比例。
  在產物型態鑑定方面,由掃描式電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)觀察材料的外觀型態,證實在最佳條件下,反應後其形態仍可保持中空球狀;而由XRD可證明此中空球狀矽酸鋰鐵具有高純度。
以鈕扣型電池進行Li2FeSiO4/C 複合電極材料循環充放電測試,應用於正極材料方面,披覆20 %碳的Li2FeSiO4/C系統,在0.05 C放電速率且充放電電壓範圍在1.5~4.7 V下,有接近理論電容的154 mAh g-1表現,並在持續充放電30圈後沒有衰竭,而在負極材料方面,在0.15 C充放電速率且電壓範圍在0.005~3 V下,可以有約800 mAh g-1的高電容,代表以此Li2FeSiO4/C 為電池正或負極進行充放電皆能有不錯之效能。
英文摘要 A novel hollow Li2FeSiO4 sphere have been successfully prepared by using the hollow silica sphere as template, where the thickness of the nanoscale Li2FeSiO4 thin shell is about 50 nm. Then, the hollow Li2FeSiO4 sphere was coated by phenolic resin as carbon precursor to obtain the hollow Li2FeSiO4/Carbon sphere (HLFS/C) composite. The structure characterizations by transmission electron microscopy and scanning electron microscopy show that HLFS/C are hollow structure with high purity. When used as the cathode materials under charge/discharge rates at 0.05 C (1C=166 mAh g-1), the HLFS/C exhibited capacity of 155 mAh g−1 with good cycle ability. Moreover, for anode application, the HLFS exhibited capacity of 820, 650 and 420 mAh g-1 for 0.15C, 0.3 C and 0.6 C rates, respectively, with good cycle ability without any structural instability up to 50 cycles. The hollow structure of HLFS/C enables us to overcome aggregation and structural instability problem as well as essential for the improvement of the electrochemical performance.
論文目次 摘要 I
Abstract II
目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 鋰離子電池簡介 2
1.3 正極材料 4
1.3.1鋰鈷氧化物(LiCoO2) 7
1.3.2 鋰鎳氧化物(LiNiO2) 8
1.3.3鋰錳氧化物(LiMn2O4) 8
1.3.4 磷酸鋰鐵(LiFePO4) 10
1.3.5 矽酸鋰鐵(Li2FeSiO4) 11
1.3.6 高電容量之有機硫磺系正極材料 12
1.4 負極材料 12
1.4.1 碳材負極材料 13
1.4.2 矽基負極材料 15
1.4.3 鋰鈦複合氧化物負極材料 16
第二章 基本理論 17
2.1 鋰離子電池之工作原理 17
2.2 Li2FeSiO4正極材料之介紹 18
2.2.1 Li2FeSiO4的晶格結構 19
2.2.2 Li2FeSiO4做為正極材料之文獻回顧 21
2.2.3 Li2FeSiO4做為負極材料之文獻回顧 23
2.3 Li2FeSiO4正極材料之合成方法 24
2.3.1 固態反應法 24
2.3.2 溶膠凝膠法 25
2.3.3 溶劑熱法 25
2.4 Li2FeSiO4正極材料改質技術 26
2.4.1 利用碳修飾改質 27
2.5 研究動機 29
第三章 實驗 31
3.1實驗藥品與材料 31
3.2樣品製備 32
3.2.1 中空球狀二氧化矽(Hollow Silica)之製備 32
3.2.2 HLFS披覆樹脂碳源複合正極材料之製備 33
3.3材料性質分析 33
3.3.1 X光繞射儀(XRD) 33
3.3.2 掃描式電子顯微鏡(SEM) 34
3.3.3 穿透式電子顯微鏡(TEM) 35
3.3.4 氮氣等溫吸附/脫附測量(BET) 35
3.3.5 顯微拉曼光譜儀(Raman) 36
3.4 電化學性質量測 37
3.4.1 正極極片之製作 37
3.4.2 鈕扣型電池組裝 38
3.4.3 充放電測試( C-rate Test) 38
3.4.4 循環伏安法( Cyclic Voltammetry) 39
第四章 結果與討論 41
4.1 矽酸鋰鐵XRD晶格探討 41
4.1.1 最佳分散溶劑之選取 41
4.1.2 最佳反應氣體之選取 42
4.1.3 最佳反應時間之選取 43
4.1.4 HLFS穿透式電子顯微鏡(TEM)觀察 45
4.1.5 HLFS比表面積(BET)測試 47
4.1.6 HLFS之IR分析 47
4.2 HLFS/C掃描式電子顯微鏡(SEM)與穿透視電子顯微鏡(TEM)觀察 48
4.2.1 HLFS/C熱重分析儀(TGA)測量 50
4.2.2 HLFS/C導電度探討 51
4.2.3 HLFS/C拉曼(Raman)光譜分析 52
4.3 HLFS/C當作正極材料鈕扣型電池充放電測試 54
4.3.1 HLFS/C不同碳源的鈕扣型電池充放電測試 54
4.3.2 循環伏安法(CV)電化學測試HLFS/C 56
4.4 HLFS/C當作負極材料鈕扣型電池充放電測試 61
第五章 結論 63
參考文獻 65
參考文獻 1. Anton Nytén, Ali Abouimrane, Michel Armand, Torbjörn Gustafsson, John O. Thomas, Electrochemistry Communications 7 (2005) 156.
2. Tarascon, J. –M.; Armand, M. Nature 2001, 414, 359.
3. 林振華; 林振富, 充電式鋰離子電池, 2001.
4. Kuczynski, G. C. Trans. Am. Inst. Min. (Metall.) Eng. 1949, 185, 169.
5. Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123.
6. Thackeray, M. Nat. Mater. 2002, 1, 81.
7. Thackeray, M. J. Electrochem. Soc. 1995, 142, 2558.
8. Shen, C. H.; Liu, R. S.; Gundakaram, R.; Chen, J. M.; Huang, S. M.; Chen, J. S.; Wang, C. M. J. Power Sources 2001, 102, 21.
9. Wei, Y. J.; Yan, L. Y.; Wang, C. Z.; Xu, X. G.; Wu, F.; Chen, G.. J. Phys. Chem. B 2004, 108, 18547.
10. Lu, C. H.; Lin, Y.; Wang, H. C. J. Mater. Sci. Lett. 2003, 22, 615.
11. Capsoni, D.; Bini, M., Chiodelli, G.; Mustarelli, P.; Massarotti, V.; Azzoni, C. B.; Mozzati, M. C.; Linati, L. J. Phys. Chem. B 2002, 106, 7432.
12. Sparks, T. D.; Gurlo, A.; Clarke, D. R. J. Mater. Chem. 2012, 22, 4631.
13. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188.
14. N. Raver, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier, M. Armand, J. Power Source. 97, 503(2001)
15. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, ECS Meeting Abstract, 58, Los Angeles, CA., May 5-10, 1996, vol. 96-1.
16. N. Ravet, J.-F. Magnan, M. Gauthier and M. Armand, International Conference on Materials for Advanced Technologies (ICMAT 2001), MRS Singapore, July 1–6, 2001.
17. M. Armand, M. Gauthier, J. F. Magnan and N. Ravet, PCT WO 02/27823 and WO 01/27824.
18. M. Gauthier, D. Geoffroy, M. Armand and N. Ravet, The 20th International Seminar on Primary and Secondary Batteries, Florida Educational Seminar Inc., Boca Raton, Florida, USA, March 17–20, 2003, www.POWERSOURCES.NET, info@powersources.net or from the authors.
19. C.-W. Wang, A. M. Sastry, K. A. Striebel, and K. Zaghib, J. Electrochem. Soc.,152, A1001 (2005).
20. J. Kim, B. Kim, J.-G. Lee, J. Cho, and B. Park, J. Power Sources, 139, 289 (2005).
21. S. Mandal, J. M. Amarilla, J. Ibanez, and J. M. Rojo, J.Electrochem. Soc., 148,A24 (2001).
22. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc.,144, 1188 (1997).
23. Chia-Chin Chang, Li-Jane Her, Huang-Kai Su, Sheng-Hsiang Hsu, and Yao Te Yen, Journal of The Electrochemical Society, 158 (5) A481 (2011)
24. N. Meethong, Y. H. Kao, S. A. Speakman, Y. M. Chiang, Adv. Funct. Mater. 19, 1060 (2009)
25. J. F. Ni, H. H. Zhou, J. T. Chen, X. X. Zhang, Mater. Lett., 59, 2361 (2005)
26. X. Ou, G. Liang, L. Wang, S. Xu, X. Zhao, J. Power Sources,184, 543 (2008)
27. H. Liu, C. Li, Q. Cao, Y. P. Wu and R. Holze, J Solid State Electrochem, 12, 1017 (2008)
28. C.S. Sun, Z. Zhou, Z.G. Xu, D.G. Wang, J.P. Wei, X.K. Bian, J. Yan, J. Power Sources, 193, 841 (2009)
29. M. Zhang, L. F. Jiao, H. T. Yuan, Y. M. Wang, J. Guo, M. Zhao, W. Wang, X. D. Zhou, Solid State Ionic, 177, 3309 (2006)
30. J.B. Heo, S.B. Lee, S.H. Cho, J. Kim, S.H. Park, Y.S. Lee, Mater. Lett., 63, 581 (2009)
31. P. Tang, N. A. W. Holzwarth, Phys. Rev. B, 68, 165107 (2003)
32. Marmorstein D, Yu T H, Striebel K A, McLarnon F R, Hou J, Cairns E J, J. Power Sources, 2000, 89:219 .
33. Petr N, Klaus M, Santhanam K S V, Otto H, Chem. Rev., 1997, 97:207.
34. Kumaresan K, Mikhaylik Y, White R, J. Electrochem. Soc., 2008, 155:A576 .
35. Mikhaylik Y V, Akridge J R, J. Electrochem. Soc., 2004, 151:A1969 .
36. He X M, Ren J G, Wang L, Pu W H, Jiang C Y, Wan C R, J. Power Sources, 2009, 190:154 .
37. Ebert, L. B. Annu. Rev. Mater. Sci. 1976, 6, 181.
38. Besenhard, J. O. J. Power Sources 1976, 77, 267.
39. Wertheim, G. K.; Van Attekum, P. M. Th. M.; Basu, S. Solid State Comm. 1980, 33, 1127.
40. Nalimova, V. A.; Guérard, D.; Lelaurain, M.; Fateev, O. V. Carbon 1995, 2, 177.
41. Jiang, J.; Dahn, J. R. Electrochim Acta 2004, 49, 4599.
42. Xu, K. Chem. Rev. 2004, 104, 4303.
43. Boukamp, B. A.; Lesh, G. C.; Huggins, R. A. J. Electrochem. Soc. 1981, 128, 725.
44. Hwang, S. M.; Lee, H. Y.; Jang, S. M.; Lee, S. J.; Baik, H. K.; Lee, J. Y. Electrochem. Solid-State Lett. 2001, 4, A97.
45. Robert, G. A.; Cairns, E. J.; Reimer, J. A. J. Power Sources 2002, 110, 424.
46. Kim, I.; Blomgren, G. E.; Kumta, P. N. J. Power Sources 2004, 130, 275.
47. Patel, P.; Kim, I.; Kumta, P. N. Mat. Sci. Eng. B-Solid 2005, 116, 347.
48. Kim, I.; Kumta, P. N.; Blomgren, G. E. Electrochem. Solid-State Lett. 2000, 3, 493.
49. Kim, I.; Blomgren, G. E.; Kumta, P. N. Electrochem. Solid-State Lett. 2003, 6, A157.
50. Liu, W. R.; Wang, J. H.; Wu, H. C.; Shieh, D. T.; Yang, M. H,; Wu, N. L. J. Electrochem. Soc. 2005, 152, A1719.
51. Xie, J.; Cao, G. S.; Zhao, X. B. Mater. Chem. Phys. 2004, 88, 295.
52. Holzapfel, M.; Buqa, H.; Krumeich, F.; Novák, P.; Petrat, F. -M.; Veitc, C. Electrochem. Solid-State Lett. 2005, 8, A516.
53. Yi, T. F.; Jiang, L. J.; Shu, J.; Yue, C. B.; Zhu, R. S.; Qiao, H. B. J. Phys. Chem. Solids 2010, 71, 1236.
54. Song, J. Y.; Wang, Y. Y.; Wan, C. C. J. Power Sources 1999, 77, 183.
55. 黃可龍; 王兆翔; 劉素琴, 鋰離子電池原理與技術, 2010.
56. Anton Nytén, Ali Abouimrane, Michel Armand, Torbjörn Gustafsson, John O. Thomas, Electrochem Commun, 2005, 7: 156.
57. Z. L. Gong, Y. X. Li, G. N. He, J. Li, and Y. Yang, Electrochemical and Solid-State Letters, 11 (5) A60 (2008)
58. Arroyo-de Dompablo M E, Armand M, Tarascon J M, et al. On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni). Electrochem Commun, 2006, 8: 1292.
59. C. Sirisopanaporn, C. Masquelier, P. G. Bruce, A. R. Armstrong, and R. Dominko, J. Am. Chem. Soc., 133, 1263 (2011).
60. N. Yabuuchi, Y. Yamakawa, K. Yoshii, and S. Komaba, Dalton Trans., 40, 1846 (2011).
61. A. R. Armstrong, N. Kuganathan, M. S. Islam, and P. G. Bruce, J. Am. Chem. Soc., 133, 13031 (2011).
62. S. Nishimura, S. Hayase, R. Kanno, M. Yashima, N. Nakayama, and A. Yamada, J. Am. Chem. Soc., 130, 13212 (2008).
63. A. Boulineau, C. Sirisopanaporn, R. Dominko, A. R. Armstrong, P. G. Bruce, and C. Masquelier, Dalton Trans., 39, 6310 (2010).
64. C. Sirisopanaporn, A. Boulineau, D. Hanzel, R. Dominko, B. Budic, A. R. Armstrong, P. G. Bruce, and C. Masquelier, Inorg. Chem., 49, 7446 (2010).
65. P. Zhang, C. H. Hu, S. Q. Wu, Z. Z. Zhu and Y. Yang, Phys. Chem. Chem. Phys., 2012, 14, 7346.
66. Dinesh Rangappa, Kempaiah Devaraju Murukanahally, Takaaki Tomai, Atsushi Unemoto, and Itaru Honma, Nano Lett. 2012, 12, 1146.
67. Christian Dippel, Steffen Krueger, Richard Kloepsch, Philip Niehoff, Bjoern Hoffmann, Sascha Nowak, Stefano Passerini, Martin Winter, Jie Li, Electrochimica Acta 85 (2012) 66.
68. Zhongxue Chen, Shen Qiu, Yuliang Cao, Jiangfeng Qian, Xinping Ai, Kai Xie,Xiaobin Hong and Hanxi Yang, J. Mater. Chem. A, 2013, 1,4988
69. N. Kalaiselvi, C.H. Doh, C.W. Park, S.I. Moon, M.S. Yun, Electrochem. Commun.6 (2004) 1110.
70. Yang Xu, Yajuan Li, Suqin Liu, Hongliang Li, Younian Liu, Journal of Power Sources 220 (2012) 103.
71. Toprakci, O.; Toprakci, H. A. K.; Ji, L. W. ; Zhang, X. W. KONA Powder and Particle Journal 2010, 28, 50.
72. Hench, L. L.; West, J. K. Chem. Rev. 1990, 90, 33.
73. Arumugam, D.; Kalaignan, G. P.; Manisankar, P. J. Solid State Electrochem. 2009, 13,301.
74. Yang, S.; Zavalij, P. Y.; Whittingham, M. S. Electrochem. Comm. 2001, 3,505.
75. Yang, S.; Song, Y.; Zavalij, P. Y.; Whittingham, M. S. Electrochem. Comm. 2002, 4, 239.
76. Delacourt, C.; Wurm, C.; Laffont, L.; Leriche, J. –B.; Masquelier, C. Solid State Ionics 2006, 177, 333.
77. Murugan, A. V.; Muraliganth, T.; Manthiram, A. J. Phys. Chem. C 2008, 112, 14665.
78. Sun, C.; Rajasekhara, S.; Goodenough, J. B.; Zhou, F. J. Am. Chem. Soc. 2011, 133, 2132.
79. Meligrana, G.; Gerbaldi, C.; Tuel, A.; Bodoardo, S.; Penazzi, N. J. Power Sources 2006, 160, 516.
80. Chang, Z. R.; Lv, H. J.; Tang, H. W.; Li, H. J.; Yuan, X. Z.; Wang, H. J. Electrochim. Acta 2009, 54, 4595.
81. Yu, L. H.; Liu, Q. S.; Wang, H. H. Ionics 2009,15, 689.
82. Jin, B.; Gu, H. B.; Zhang, W. X.; Park, K. H.; Sun, G. P. J. Solid State Electrochem. 2008, 12, 1549.
83. Liang, G. C.; Wang, L.; Ou, X. Q.; Zhao, X.; Xu, S. Z.; J. Power Sources 2008, 184, 538.
84. Hsu, K. F.; Tsay, S. Y.; Hwang, B. J. J. Mater. Chem. 2004, 14, 2690.
85. Wang, Y. G.; Wang, Y. R.; Hosono, E.; Wang, K. X.; Zhou, H. S. Angew. Chem. Int. Ed. 2008, 47, 7461.
86. Zhang, W. J. J. Power Sources 2011, 196, 2962.
87. Li, H. Q.; Zhou, S. H. Chem. Comm. 2012, 48, 1201.
88. Haitao Zhou, Mari-Ann Einarsrud, Fride Vullum-Bruer, Journal of Power Sources, 235 (2013) 234.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw