進階搜尋


下載電子全文  
系統識別號 U0026-2807201416253400
論文名稱(中文) 一種整合曲柄滑塊與螺桿變轉速機構之運動與動力特性設計
論文名稱(英文) Kinematic and Dynamic Characteristics Design of a Compound Variable-Speed Mechanism with Slider-Crank and Screw Mechanisms
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 楊虔豪
研究生(英文) Chian-Hao Yang
學號 N16014459
學位類別 碩士
語文別 中文
論文頁數 159頁
口試委員 指導教授-顏鴻森
口試委員-徐孟輝
口試委員-蕭國鴻
中文關鍵字 變轉速  曲柄滑塊機構  螺桿機構  複合機構  伺服機構  運動特性  動力特性 
英文關鍵字 variable speed  slider-crank mechanism  screw mechanism  servo mechanism  motion and dynamic characteristics 
學科別分類
中文摘要 傳統上設計機構輸出運動特性的條件是等轉速輸入;若欲改變輸出的運動特性,則必須重新設計機構的幾何尺寸。針對此狀況,可以利用變轉速輸入的設計概念,不用改變原機構的尺寸,藉著輸入轉速的變化來達到不同運動特性輸出的目的。本研究針對曲柄滑塊機構、螺桿機構、及其複合機構,利用變轉速輸入的設計概念,來達到改善從動件運動與動力特性目的。
首先推導曲柄滑塊機構、螺桿機構、及複合機構的運動與動力分析理論,再以此為基礎提出一套變轉速函數的設計方法,進而利用最佳化方法分別求出改善曲柄滑塊機構、螺桿機構、及複合機構的運動與動力特性的輸入轉速函數。再者,設計與製作伺服控制實驗裝置,控制伺服馬達驅動曲柄滑塊機構、螺桿機構、及複合機構,經由調整控制器的控制參數,使伺服馬達產生所設計的轉速軌跡,並利用量測裝置讀取運動與動力特性數據,驗證變轉速理論的可行性。
研究結果指出,利用Bezier曲線設計轉速函數,可在不改變機構尺寸的情況下,其輸出符合預設運動條件,且具有較佳的運動與動力特性。另外,利用曲柄滑塊機構可以取代正反轉往復旋轉輸入運動,來延長馬達使用壽命,並且可以利用變轉速函數設計改善從動件的運動與動力特性。藉由本研究所建立的實驗裝置,所量測的運動與動力特性結果與理論值接近,證明本研究所推導之變轉速理論的可行性。
英文摘要 Traditionally, a designer assumes a constant input to design the output characteristics of the target mechanism. Based on such an assumption, if the required outputs are different, the dimensions of the mechanism should be redesigned. An alternative approach of achieving this goal without modifying the geometric dimensions of the mechanism is to design the mechanism with a variable input speed. This research uses such a design concept to improve the kinematic and dynamic characteristics of a slider-crank mechanism, a screw mechanism, and their compound mechanism. Multi-objective optimization methods
Firstly, the equations for analysing the kinematic and dynamic characteristics are derived. Then, a variable input speed function is designed along with applying multi-objective optimization methods to improve the output characteristics of the slider-crank mechanism, screw mechanism, and compound mechanism. The study also establishes a servo control device for controlling a servo motor to generate the desired input speed function for driving the three interested mechanisms. Furthermore, a device for measuring the output characteristics is used to verify the feasibility of the proposed theory.
The study shows that the Bezier curve is suitable for designing the variable input speed function to improve the output characteristics without modifying the dimensions of the interested mechanisms. Furthermore, the results of the compound mechanism show that the slider-crank mechanism can provide an equal input motion both in positive and negative directions of the motor. In addition, the experimental results are close to the theoretic values. This proves the feasibility of the proposed design approach.
論文目次 摘要 I
Extended Abstract II
致謝 XII
目錄 XIII
表目錄 XVI
圖目錄 XVII
符號說明 XXIII
第一章 前言 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究目的 3
1.4 論文架構 4
第二章 曲柄滑塊機構運動與動力分析 6
2.1 運動分析 6
2.2 動力分析 8
2.3 無因次化運動方程式 12
2.4 小結 15
第三章 螺桿構運動與動力分析 16
3.1 運動分析 16
3.2 動力分析 18
3.3 無因次化運動方程式 20
3.4 小結 22
第四章 複合機構運動與動力分析 23
4.1 運動分析 23
4.2 動力分析 26
4.3 無因次化運動方程式 33
4.4 小結 36
第五章 轉速函數設計 37
5.1 Bezier曲線 37
5.2 最佳化設計 40
5.3 小結 43
第六章 設計實例 44
6.1 曲柄滑塊機構設計實例 44
6.2 螺桿機構設計實例 60
6.3 複合機構設計實例 74
6.4 小結 93
第七章 轉速函數控制 97
7.1 伺服控制系統 97
7.2 系統判別 98
7.3 PID控制器 100
第八章 實驗設備設計與測試 104
8.1 簡介 104
8.2 實驗設備 104
8.3 曲柄滑塊機構實驗結果 111
8.4 螺桿機構實驗結果 120
8.5 複合機構實驗結果 131
8.6 小結 143
第九章 結論與建議 150
9.1 結論 150
9.2 建議 151
參考文獻 152
著作權聲明 159

參考文獻 [1] H.A. Rothbart, Cams: Design, Dynamics and Accuracy, John Wiley & Sons, New York, 1956.
[2] D. Tesar and G.K. Matthew, The Dynamics Synthesis, Analysis, and Design of Modeled Cam Systems, Lexington Books, Lanham, Maryland, 1976.
[3] H.S. Yan and M.K. Fong, “An approach for reducing the peak acceleration of cam-follower system using a B-spline representation,” Journal of the Chinese Society of Mechanical Engineers, Taipei, Vol. 15, No. 1, pp. 48-55, 1994.
[4] H.S. Yan, M.H. Hsu, M.K. Fong, and W.H. Hsieh, “A kinematic approach for eliminating the discontinuity of motion characteristics of cam-follower systems,” Journal of Applied Mechanisms & Robotics, Vol. 1, No. 2, pp.1-6, 1994.
[5] H.S. Yan, M.C. Tsai, and M.H. Hsu, “A variable-speed method for improving motion characteristics of cam-follower systems,” ASME Transactions, Journal of Mechanical Design, Vol. 118, No. 1, pp. 250-258, 1996.
[6] H.S. Yan, M.C. Tsai, and M.H. Hsu, “An experimental study of the effects of cam speed on cam-follower systems,” Mechanism and Machine Theory, Vol. 31, No. 4, pp. 397-412, 1996.
[7] 白友中,凸輪機構之週期性轉速追蹤控制,碩士論文,國立成功大學機械工程學系,台南,1995。

[8] H.J. Van de Straete and J. De Schutter, “Hybrid cam mechanisms,” IEEE/ASME Transactions on Mechatronics, Vol. 1, No. 4, pp.284-289, 1996.
[9] M.H. Hsu and W.R. Chen, “On the design of speed function for improving torque characteristics of cam-follower systems,” Proc. 10th World Congress on the Theory of Machine and Mechanisms, pp. 272-277, 1999.
[10] Y.A. Yao, C. Zhang, and H.S. Yan, “Motion control of cam mechanisms,” Mechanism and Machine Theory, Vol. 35, No. 4, pp. 593-607, 2000.
[11] Y.A. Yao, H.S. Yan, C. Zhang, and H.J. Zou, “Integrated design of cam mechanisms and servo-control systems,” Science in China (Series E), Vol. 43, No. 5, pp.511-518, 2000.
[12] H.S. Yan, Y.A. Yao, and H.J. Zou, “Polydyne servo-cam design,” Journal of the Chinese Society of Mechanical Engineers, Taipei, Vol. 22, No.2, pp. 90-104, 2001.
[13] Y.A. Yao, H.S. Yan, and C. Zhang, “A variable-speed method for reducing residual vibrations in elastic cam-follower systems,” ASME Transactions, Journal of Dynamic Systems, Measurement, and Control, Vol. 125, No. 3, pp.480-482, 2003.
[14] Y.A. Yao and H.S. Yan, “A novel concept for minimizing speed fluctuations in motor driven mechanisms,” Journal of the Chinese Society of Mechanical Engineers, Taipei, Vol. 24, No. 4, pp. 565-570, 2003.
[15] Y.A. Yao, J.Z. Cha, and H.S. Yan, “Co-design of mechanism and control,” Chinese Journal of Mechanical Engineering, Beijing, Vol. 40, No.10, pp. 1-5, 2004.

[16] H.S. Yan and W.J. Tsai, “A variable-speed approach for preventing cam-follower separation,” Journal of Advanced Mechanical Design, Systems, and Manufacturing, JSME International Journal, Vol. 2, No.1, pp.12-23, 2008.
[17] H.S. Yan and W.J. Tsai, “Motion adaptation of cam-follower systems by variable input speeds,” Proceeding of the Institute of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, Vol. 222(C3), pp.459-472, 2008.
[18] H.S. Yan and C.C. Yeh, “Integrated kinematic and dynamic designs for variable-speed plate cam mechanisms,” Proceedings of the Institute of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, Vol. 225, pp.194-203, 2010.
[19] R.L. Kaplan and S.S. Rao, “Goal programming approach for the balancing of variable input speed mechanisms,” Proceedings of 1987 ASME Design Technology Conferences, DE-Vol. 10-1, pp. 163-172, 1987.
[20] I.S. Kochev, “Full shaking moment balancing of planar linkages by a prescribed input speed fluctuations,” Mechanism and Machine Theory, Vol. 25, No. 4, pp. 459-466, 1990.
[21] S. Yossifon and R. Shivpuri, “Design considerations for electric servomotor driven 30 ton double knuckle press for precision forming,” Int. Journal of Machine Tools and Manufacture, Vol. 33, No. 2, pp. 193-208, 1993.
[22] H.S. Yan and W.R. Chen, “On the output motion characteristics of variable input speed servo-controlled slider-crank mechanisms,” Mechanism and Machine Theory, Vol. 35, No. 4, pp. 541-561, 2000.
[23] H.S. Yan and W.R. Chen, “A variable input speed approach for improving the output motion characteristics of Watt-type presses,” International Journal of Machine Tools & Manufacture, Vol. 40, No. 5, pp. 675-690, 2000.
[24] H.S. Yan and W.R. Chen, “Optimized kinematic properties for Stevenson-type presses with variable input speed approach,” ASME Transactions, Journal of Mechanical Design, Vol. 124, No. 2, pp. 350-354, 2002.
[25] A. Kirecci and L.C. Dulger, “A study on a hybrid actuator,” Mechanism and Machine Theory, Vol. 35, No. 4, pp. 1141-1149, 2000.
[26] J.Y. Liu, M.H Hsu, and F.C. Chen, “On the design of rotating speed functions to improve the acceleration peak value of ball-screw transmission mechanism,” Mechanism and Machine Theory, Vol. 39, No. 4, pp. 1035-1049, 2001.
[27] H.S. Yan and R.C. Soong, “Kinematic and dynamic design of four-bar linkages by links counterweighing with variable input speed,” Mechanism and Machine Theory, Vol. 36, No. 4, pp. 1051-1071, 2001.
[28] H.S. Yan and R.C. Soong, “Kinematic and dynamic design of four-bar linkages by mass retribution with variable input speed,” Journal of the Chinese Society of Mechanical Engineers, Taipei, Vol. 23, No. 4, pp.321-332, 2002.
[29] H.S. Yan and R.C. Soong, “Kinematic and dynamic design of four-bar linkages with variable input speed and external applied loads,” Transactions of the Canadian Society for Mechanical Engineering, Vol. 26, No. 3, pp. 281-310, 2002.
[30] H.S. Yan and R.C. Soong, “An integrated design approach of four-bar linkages with variable input speed,” JSME International Journal, Mechanical Systems, Machine Elements and Manufacturing, Series C, Vol. 47, No. 1, pp. 350-362.
[31] J.J. Lee and C.C. Cho, “Improving kinematic and structural performance of geneva mechanisms using the optimal control method,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 261, pp. 761-774, 2002.
[32] Y.A. Yao, H.S. Yan, and H.J. Zou, “Output motion control of variable-input-speed linkage mechanisms,” Transactions of the Canadian Society for Mechanical Engineering, Vol. 26, No. 1, pp. 1-14, 2002.
[33] Y.A. Yao, H.S. Yan, and H.J. Zou, “Dynamic design of variable speed planar linkages,” Chinese Journal of Mechanical Engineering, Beijing, Vol. 18, No. 1, pp. 51-54, 2005.
[34] 林志明,應用變轉速滾珠螺桿機構於伺服沖床之研究,碩士論文,國立成功大學機械工程學系,台南,2003。
[35] 陳仁智,具負載變轉速滾珠螺桿機構於伺服沖床之研究,碩士論文,國立成功大學機械工程學系,台南,2004。
[36] 陳誌峰、邱顯堂,用傅立葉級數決定輸入轉速之四連桿機構最佳平衡設計,第八屆全國機構與機器設計學術研討會,中華民國機構與機器原理學會,台北,第498-505頁,2005年。
[37] H.S. Yan and G.J. Yan, “Integrated Control and Mechanism Design for Variable Input-Speed Servo Four-bar Linkages,” Journal of Mechatronics, Vol. 19, pp. 274-285, 2009.

[38] 郭明聖,具傅立葉級數輸入變轉速滾珠螺桿於伺服沖床之研究,碩士論文,國立成功大學機械工程學系,台南,2011。
[39] 徐翊清,一種變轉速復合螺桿機構之運動與動力特性設計,碩士論 文,國立成功大學機械工程學系,台南,2013。
[40] A.S. Hall Jr., Notes on Mechanism Analysis, BALT Publishers, Lafayette, Indiana, 1981.
[41] P. Bezier, The Mathematical Basis of the UNISURF CAD System, Butterworths, London, 1986.
[41] K. Erwin, Advanced Engineering Mathenatics, 8th edition, John Wiley & Sons, 1999.
[42] N. Minorsky, “Directional stability of automatically steered bodies,” Journal of American Society of Naval Engineers, Vol. 42, No. 2, pp. 280-309, 1922.
[43] A. Callender, D.R. Hartree, and A. Porter, “Time lag in a control system,” Phil. Trans. Roy. Soc. London, Vol. 235, No. 756, pp. 415-444, 1936.
[44] J.G. Ziegler and Nichols, “Optimal settings for automatic controllers,” Transactions of the ASME, Vol. 64, pp. 759-768, 1942.
[45] dSPACE, RTI Reference for DS1102 DSP Controller Board, Release 3.4, dSPACE GmbH, Paderborn, Germany, 2002.
[46] dSPACE, RTI and RTI-MP Implementation Guide: Inserting Custom C Code, Release 3.4, dSPACE GmbH, Paderborn, Germany, 2002.
[47] Real Time Workshop Use’s Guide, Vesion 2.1, The Math Works, Inc, 1997.
[48] dSPACE, RTI Reference for DS1102 DSP Controller Board, Release 3.4, dSPACE GmbH, Paderborn, Germany, 2002.
[49] dSPACE, CotrolDesk Experiment Guide, Version 2.0, dSPACE GmbH, Paderborn, Germany, 2001.
[50] dSPACE, MLIB/MTRACE Matlab-dSPACE Interface Libraries, Version 4.3, dSPACE GmbH, Paderborn, Germany, 2001.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw