進階搜尋


下載電子全文  
系統識別號 U0026-2807201416025000
論文名稱(中文) CdSe量子點摻雜於高分子複合材料之壓力感測研究
論文名稱(英文) Research on CdSe Quantum Dot Doped in Polymer Matrix for Pressure Sensing
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 柯東廷
研究生(英文) Tung-Ting Ke
學號 n16014336
學位類別 碩士
語文別 英文
論文頁數 80頁
口試委員 指導教授-羅裕龍
口試委員-黃聖杰
口試委員-鍾震桂
口試委員-宋狄文
中文關鍵字 量子點  高分子複合材料  光致發光  壓力感測 
英文關鍵字 Quantum dots  Polymer Composites  Photoluminescence  Pressure Sensing 
學科別分類
中文摘要 在本研究中,CdSe量子點(QDs)摻雜於Toluene/PMMA/PDMS/Epoxy 高分子複合材料之壓力感測被研究。發現CdSe量子點摻雜於高分子複合材料其光致發光(PL)光譜在壓力0-180 psi範圍有所變化,從其光譜我們可以得知材料的發光強度、PL中心波長偏移和反應時間。此外,CdSe量子點摻雜碳管(Carbon tube)於高分子複合材料對於壓力之敏感度(Sensitivity)和量子點摻雜於高分子複合材料之熱效應(Thermal effect)也被研究。比較CdSe量子點摻雜於四種不同的材料,CdSe量子點摻雜於PMMA對於壓力感測的敏感度最高,根據Stern–Volmer方程式其最大反應(I0/I)為1.48和敏感度 (sensitivity) 為2.67×10-3/psi 。CdSe量子點摻雜於四種不同材料於0 psi下溫度範圍30℃-75℃被量測,溫度與量子點間的交互作用是PL強度衰減和紅移的主要因素。
從實驗結果,CdSe量子點摻雜碳管於Toluene/PMMA在壓力0-180 psi敏感度沒有顯著的增加。然而,CdSe量子點摻雜碳管於PDMS和未摻雜碳管相比敏感度從1.38×10-3/psi 增加至 3.5×10-3/psi。
本研究中雖然我們無法精確的控制以及量化不同sample間量子點分佈的狀況,但是由實驗結果可以總結出量子點摻雜碳管於不同高分子基底材料中之光譜變化可歸因於氮氣壓力變化所造成。QDs摻雜於不同材料的光譜特性變化可以被歸因於量子點之間或者是量子點與基底材料分子之間的偶極(dipole)-偶極引起之共振現象所導致,這種現象可以藉由Förster能量轉移理論 (Förster energy transfer theory)來解釋。在未來下一步的研究,量子點-高分子複合材料也許可以運用在光學式應變計(strain gauges)和壓力感測器(pressure sensors) 。
英文摘要 In this study, CdSe quantum dots (QDs) doped in Toluene/PMMA/PDMS/Epoxy polymer matrix for pressure sensing are studied. It is found that photoluminescent (PL) spectra of sample are sensitive to applied pressures from 0 - 180 psi. The emission intensity, PL shift and response times of QDs doped into matrixes with different pressure are characterized in different polymer matrix. Furthermore, CdSe QDs doped with different volume of carbon tube in different polymer matrixes for improving sensitivity and QDs doped in different matrixes for thermal effect are also studied.
As compared to sensitivities to applied pressure of the QDs doped in four different matrixes, QDs doped in PMMA are most sensitive to applied pressure. The maximum response (I0/I) of the QDs doped in PMMA can be seen to be approximately 1.48 in Stern–Volmer equation corresponding to sensitivity as (I0/I)/pressure = 2.67×10-3/psi. Besides, CdSe QDs doped in different matrix under different temperature at 0 psi were tested and it is concluded that PL quenching and redshift majorly depend on the temperature-sensitive of QDs instead of some interaction between QDs and matrix which means the distance.
Spectral characteristics of QDs doped in matrixes exhibit resembling change behavior with different pressure. Experiment result indicated QDs doped with carbon tube into Toluene/PMMA do not remarkably improve sensitivity to applied pressure from 0-180 psi. However, QDs doped with carbon tube into PDMS improve sensitivity from 1.38×10-3/psi to 3.5×10-3/psi.
The change of Spectral characteristics of QDs doped in different matrixes with different pressure can be attributed to the resonance phenomenon cause by dipole-dipole interaction between QDs or between QDs and matrix molecules, and the phenomenon could be described by Förster energy transfer theory. With further study, QDs-polymer matrix composite may be applied to a new type of optical strain gauges and pressure sensors.
論文目次 Table of Contents
Abstract i
中文摘要 iii
致謝 v
Table of Contents vi
List of Figures viii
List of Tables xii
Chapter 1 Preface 1
Chapter 2 Introduction 3
2.1 Pressure sensing 3
2.2 Quantum Dots 11
2.3 Viscoelasticity, creep and plasticity in polymer 20
2.4 Basic theory 21
Chapter 3 Experiments 27
3.1 Material 27
3.2 Synthesis of CdSe QDs 27
3.3 Synthesis of Carbon tube solution 30
3.4 Immobilization of CdSe QDs in Toluene / PMMA / PDMS / Epoxy Matrix 31
3.5 Immobilization of CdSe QDs doped with carbon tube in Toluene/PMMA/PDMS Matrix. 32
3.5 Experiment setup 34
Chapter 4 Results and Discussion 36
4.1 Structural and optical characterization of QDs 36
4.2 Structural characterization of QDs doped in Toluene/ PMMA/ PDMS/ Epoxy Matrix 40
4.3 Structural characterization of QDs doped with carbon tube in Toluene/ PMMA/ PDMS /Epoxy Matrix 42
4.4 Sensing performance of QDs doped in Toluene/ PMMA/ PDMS /Epoxy Matrix 44
4.4.1. The first pressure change case 44
4.4.2. The second pressure change case 51
4.4.3. The third pressure change case 52
4.4.4. Summary 54
4.5 Sensing performance of QDs doped with carbon tube in Toluene/ PMMA/ PDMS Matrix 56
4.6 Mechanism in florescence from QDs doped in Matrix with pressure 63
4.7 Thermal effect of QDs doped in Toluene/ PMMA/ PDMS/ Epoxy Matrix 70
Chapter 5 Conclusions 73
Reference 75

List of Figures
Fig. 2.1 (a) Basic structure of the device. (b) Experimental setup for testing the pressure sensitivity of the device. [Manunza et al., 2006] 3
Fig. 2.2 Setup of the equipment used for the measurements. [Juliana et al, 2010]……… 4
Fig. 2.3 (a) Conductive paths in composites without pressure. (b) Formation of conductive paths in composite by pressure. [Hussain et al, 2001]……… 6
Fig. 2.4 Schematic diagram for the inner structure of nanocomposite. [Wang et al, 2009] 7
Fig. 2.5 PL peak position versus pressure for 7 nm diameter PbSe NQDs. [Zhuravlev et al., 2007] 8
Fig. 2.6 (a) Fluorescence Intensity from a 640 nm QD nanocomposite with increasing load. (b) QD fluorescence intensity plotted against pressure using the liquid hydrostatic load cell. [Ford et al., 2013] 10
Fig. 2.7 Emission colors from small to large CdSe QDs. [Bera et al., 2009]……… 11
Fig. 2.8 PL spectra of some of the CdSe QDs. [Bera et al., 2009] 12
Fig. 2.9 Illustration of size-tunable QDs and creation of the exciton upon photo excitation followed by radioactive recombination or relaxation through trap states. [Frasco and Chaniotakis, 2009] 13
Fig. 2.10 Summary of the fluorescence quenching mechanisms for the detection of metal ions based on direct interaction of the ions with QDs. [Wu et al., 2013]. 18
Fig. 2.11 Process of exciting an atom with a high energy photon and releasing a lower energy photon back out. [Gonsalves, 2012] 21
Fig. 2.12 The correlation of QDs size leading to different sized band gaps and different wavelengths of emitted photons. [Gonsalves, 2012] 22
Fig. 2.13 One form of a Jablonski diagram. [Lakowicz, 2007] 23
Fig. 2.14 Spectral overlap for RET. [Lakowicz, 2007] 25
Fig. 3.1 Thermal Decomposition Method flow chart 28
Fig. 3.2 An illustration of CdSe QDs synthesis by thermal decomposition method……. 29
Fig. 3.3 Synthesis of carbon tube solution flow chart 30
Fig. 3.4 Synthesis of CdSe QDs doped in Toluene/PMMA/PDMS/Epoxy flow chart… 32
Fig. 3.5 Synthesis of CdSe QDs doped with carbon tube in Toluene/PMMA/PDMS flow chart 33
Fig. 3.6 Schematic illustration of the experiment arrangement 34
Fig. 3.7 Experiment setup for testing the pressure sensitivity of the samples…… 35
Fig. 4.1 UV-vis absorption spectrum of CdSe QDs. 37
Fig. 4.2 PL emission spectrum of CdSe QDs. 37
Fig. 4.3 EDX analysis results for CdSe QDs. 38
Fig. 4.4 XRD analysis results for CdSe QDs. 38
Fig. 4.5 TEM image of CdSe QDs. 39
Fig. 4.6 TEM image of CdSe QDs doped in Toluene. 40
Fig. 4.7 TEM image of CdSe QDs in PMMA. 41
Fig. 4.8 TEM image of CdSe QDs in PDMS. 41
Fig. 4.9 TEM image of CdSe QDs in Epoxy. 41
Fig. 4.10 TEM image of CdSe QDs doped with carbon tube in Toluene. 43
Fig. 4.11 TEM image of CdSe QDs doped with carbon tube in PMMA. 43
Fig. 4.12 TEM image of CdSe QDs doped with carbon tube in PDMS. 43
Fig. 4.13 TEM image of CdSe QDs doped with carbon tube in Epoxy. 44
Fig. 4.14 (a) Pressure varied from 0 to 180 psi in the pressure loading curve. (b) Corresponding emission intensity of QD doped in different matrix in time period of 0s-300s. 45
Fig. 4.15 Emission spectrum of QDs doped in Toluene under different pressure…… 46
Fig. 4.16 Emission spectrum of QDs doped in PMMA under different pressure…… 47
Fig. 4.17 Emission spectrum of QDs doped in PDMS under different pressure…… 47
Fig. 4.18 Emission spectrum of QDs doped in Epoxy under different pressure…… 48
Fig. 4.19 Emission peak positions varied with different pressure. 48
Fig. 4.20 Stern-Volmer plot of QDs doped in different matrix. 50
Fig. 4.21 Response of QD doped in different matrix with pressure varied from 0 to 180 psi in three pressure loading cycles. 51
Fig. 4.22 QDs doped in different matrix were tested in air draw out for 10 mins by a vacuum-pump. 52
Fig. 4.23 (a) Pressure varied from 0 to 180 psi in the pressure loading curve. (b) Corresponding emission intensity of QD doped in different matrix in time period. 53
Fig. 4.24 Stern-Volmer plot of QDs doped with different volume of carbon tube in Toluene. 57
Fig. 4.25 Stern-Volmer plot of QDs doped with different volume of carbon tube in PMMA. 57
Fig. 4.26 Stern-Volmer plot of QDs doped with different volume of carbon tube in PDMS 58
Fig. 4.27 Response of QDs doped with different volume of carbon tube in Toluene with pressure varied from 0 to 180 psi in three pressure loading cycles……… 59
Fig. 4.28 Response of QDs doped with different volume of carbon tube in PMMA with pressure varied from 0 to 180 psi in three pressure loading cycles……… 60
Fig. 4.29 Response of QDs doped with different volume of carbon tube in PDMS with pressure varied from 0 to 180 psi in three pressure loading cycles……… 60
Fig. 4.30 Jablonski diagram with collisional quenching and FRET [Lakowicz, 2007]. 64
Fig. 4.31 Schematic illustration of QDs in matrix quenching and enhancing mechanism.( :Pressure, :QDs, :Matrix) 67
Fig. 4.32 Schematic illustration of QDs-matrix quenching and enhancing mechanism.( :Pressure, :QDs in matrix ) 68
Fig. 4.33 Stren-Volmer plot QDs doped in different matrix. 71
Fig. 4.34 Emission peak positions varied with different temperature. 71

List of Tables
Table 2.1 Properties of carbon black and silicone rubber. [Wang et al, 2009]……… 7
Table 2.2 Comparison between the optical properties of traditional organic dyes and QDs 14
Table 2.3 Selected in vitro and in vivo bioimaging studies using QDs. [Rizvi, 2010] 19
Table 4.1 Response time of QDs doped with carbon tube in different Matrix with pressure varied from 0 to 180 psi in three pressure loading cycles. (Note: the time is averaged from three cycles) 61


參考文獻 Reference
Åkerman, M. E., Chan, W. C., Laakkonen, P., Bhatia, S. N., and Ruoslahti, E., “Nanocrystal targeting in vivo,” Proceedings of the National Academy of Sciences, (2002), 99 (20), 12617-12621.

Al-Haik, M., Vaghar, M. R., Garmestani, H., and Shahawy, M., “Viscoplastic analysis of structural polymer composites using stress relaxation and creep data,” Composites Part B: Engineering, (2001), 32 (2), 165-170.

Ashruf, C. M. A., “Thin flexible pressure sensors,” Sensor Review, (2002), 22 (4), 322-327.

Biju, V., Kanemoto, R., Matsumoto, Y., Ishii, S., Nakanishi, S., Itoh, T., and Ishikawa, M., “Photoinduced photoluminescence variations of CdSe quantum dots in polymer solutions,” The Journal of Physical Chemistry C, (2007), 111 (22), 7924-7932.

Biju, V., Makita, Y., Sonoda, A., Yokoyama, H., Baba, Y., and Ishikawa, M., “Temperature-sensitive photoluminescence of CdSe quantum dot clusters,” The Journal of Physical Chemistry B, (2005), 109 (29), 13899-13905.

Chen, Y. and Rosenzweig, Z., “Luminescent CdS quantum dots as selective ion probes,” Analytical Chemistry, (2002), 74 (19), 5132-5138.

Choi, C. L., Koski, K. J., Sivasankar, S., and Alivisatos, A. P., “Strain-dependent photoluminescence behavior of CdSe/CdS nanocrystals with spherical, linear, and branched topologies,” Nano letters, (2009), 9 (10), 3544-3549.

Cordeiro, J. R., Teixeira, W. S., Lippi, R., Li, R. W., Ventura, L., and Gruber, J., “Measuring air pressure with a polymeric gas sensor,” Química Nova, 2010, 33 (10), 2272-2273.

Cordero, S. R., Carson, P. J., Estabrook, R. A., Strouse, G. F., and Buratto, S. K., “Photo-activated luminescence of CdSe quantum dot monolayers,” The Journal of Physical Chemistry B, (2000), 104 (51), 12137-12142.



Eaton, W. P. and Smith, J. H. “Micromachined pressure sensors: review and recent developments,” In Smart Structures and Materials', (1997, June), 97 (pp. 30-41). International Society for Optics and Photonics.

Fan, L. J., and Jones, W. E., “Studies of photoinduced electron transfer and energy migration in a conjugated polymer system for fluorescence “turn-on” chemosensor applications,” The Journal of Physical Chemistry B, (2006), 110 (15), 7777-7782.

Fancey, K. S., “A mechanical model for creep, recovery and stress relaxation in polymeric materials,” Journal of materials science, (2005), 40 (18), 4827-4831.

Feng, C. W., Keong, C. W., Hsueh, Y. P., Wang, Y. Y., and Sue, H. J., “Modeling of long-term creep behavior of structural epoxy adhesives,” International journal of adhesion and adhesives, (2005), 25 (5), 427-436.

Ford, K. B., Collins, M. K., Ajami, N. E., Dowds, D., Mesyef, K., Trovillion, J., and Marsh, C. P., “Optical response to low applied pressure in a quantum dot nanocomposite,” Materials Letters, (2013), 106, 301-303.

Frasco, M. F. and Chaniotakis, N., “Semiconductor quantum dots in chemical sensors and biosensors,” Sensors, (2009), 9 (9), 7266-7286.

Gonsalves, P. R. “The design and fabrication of a microfluidic ractor for synthesis of cadmium selenide quantum dots using silicon and glass substrates,” (2012).

Grant, C. D., Crowhurst, J. C., Hamel, S., Williamson, A. J., and Zaitseva, N., “Anomalous Photoluminescence in CdSe Quantum‐Dot Solids at High Pressure Due to Nonuniform Stress,” Small, (2008), 4 (6), 788-794.

Hussain, M., Choa, Y. H., and Niihara, K., “Fabrication process and electrical behavior of novel pressure-sensitive composites,” Composites Part A: applied science and manufacturing, (2001), 32 (12), 1689-1696.

Ishii, S., Ueji, R., Nakanishi, S., Yoshida, Y., Nagata, H., Itoh, T., and Biju, V., “Fabrication of a quantum dot-polymer matrix by layer-by-layer conjugation,” Journal of Photochemistry and Photobiology A: Chemistry, (2006), 183 (3), 285-291.

Jia, Y., Peng, K., Gong, X. L., and Zhang, Z., “Creep and recovery of polypropylene/carbon nanotube composites,” International Journal of Plasticity, (2011), 27 (8), 1239-1251.

Jorge, P., Martins, M. A., Trindade, T., Santos, J. L., and Farahi, F., “Optical fiber sensing using quantum dots,” Sensors, (2007), 7 (12), 3489-3534.

Kairdolf, B. A., Smith, A. M., Stokes, T. H., Wang, M. D., Young, A. N., and Nie, S., “Semiconductor quantum dots for bioimaging and biodiagnostic applications,” Annual review of analytical chemistry (Palo Alto, Calif.), (2013), 6 (1), 143.

Kawamura, Y., Brooks, J., Brown, J. J., Sasabe, H., and Adachi, C., “Intermolecular interaction and a concentration-quenching mechanism of phosphorescent Ir (III) complexes in a solid film,” Physical review letters, (2006), 96 (1), 017404.

Kim, B. S., Islam, M. A., Brus, L. E., and Herman, I. P., “Interdot interactions and band gap changes in CdSe nanocrystal arrays at elevated pressure,” Journal of Applied Physics, (2001), 89 (12), 8127-8140.

Klessinger, M. and Michl, J., “Excited states and photochemistry of organic molecules,” VCH Publishers, (1995), pp.297–301.

Knite, M., Teteris, V., Kiploka, A., and Kaupuzs, J., “Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials,” Sensors and Actuators A: Physical, (2004), 110 (1), 142-149.

Kristukat, C., Goñi, A. R., Hatami, F., Dreßler, S., Masselink, W. T., and Thomsen, C., “High‐pressure photoluminescence study of the electronic structure of InP/GaP quantum dots,” physica status solidi (b), (2003), 235(2), 412-416.

Labeau, O., Tamarat, P., and Lounis, B., “Temperature Dependence of the Luminescence Lifetime of Single C d S e/Z n S Quantum Dots,” Physical review letters, (2003), 90 (25), 257404.

Lakowicz, J. R. (Ed.), Principles of fluorescence spectroscopy, Springer, (2007).



Li, J. J., Wang, Y. A., Guo, W., Keay, J. C., Mishima, T. D., Johnson, M. B., and Peng, X., “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” Journal of the American Chemical Society, (2003), 125 (41), 12567-12575.

Li, J., Li, G. H., Xia, J. B., Zhang, J. B., Lin, Y., and Xiao, X. R., “Optical spectra of CdSe nanocrystals under hydrostatic pressure,” Journal of Physics: Condensed Matter, (2001), 13 (9), 2033.

Li, S., Zhang, K., Yang, J. M., Lin, L., and Yang, H., “Single quantum dots as local temperature markers,” Nano letters, (2007), 7 (10), 3102-3105.

Lin, Y. C., Chou, W. C., Susha, A. S., Kershaw, S. V., and Rogach, A. L., “Photoluminescence and time-resolved carrier dynamics in thiol-capped CdTe nanocrystals under high pressure,” Nanoscale, (2013), 5 (8), 3400-3405.

Lü, W., Umezu, I., and Sugimura, A., “Evolution of Energy Transfer Process between Quantum Dots of Two Different Sizes during the Evaporation of Solvent,” Japanese Journal of Applied Physics, (2008), 47 (8R), 6592.

Manunza, I., Sulis, A., and Bonfiglio, A., “Pressure sensing by flexible, organic, field effect transistors,” Applied Physics Letters, 2006, 89 (14), 143502.

Maruyama, H., Tomita, K., Masuda, T., and Arai, F., “Temperature measurement by color analysis of fluorescent spectrum using cell investigation tool impregnated with quantum dot for cell measurement on a microfluidic chip,” In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on (pp. 13-18), IEEE.

Oleinik, E. F., Salamatina, O. B., Rudnev, S. N., and Shenogin, S. V., “Plastic deformation and performance of engineering polymer materials,” Polymers for Advanced Technologies, (1995), 6 (1), 1-9.

Pan, B., Cui, D., Ozkan, C. S., Ozkan, M., Xu, P., Huang, T.,and Gao, F., “Effects of carbon nanotubes on photoluminescence properties of quantum dots,” The Journal of Physical Chemistry C, (2008), 112 (4), 939-944.

Papanicolaou, G., “Viscoelastic constitutive modeling of creep and stress relaxation in polymers and polymer matrix composites,” Creep and Fatigue in Polymer Matrix Composites, (2010), 1.

Rizvi, S. B., Ghaderi, S., Keshtgar, M., and Seifalian, A. M., “Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging,” Nano reviews, (2010), 1, 5161.

Sau, K. P., Chaki, T. K., and Khastgir, D., “Electrical and mechanical properties of conducting carbon black filled composites based on rubber and rubber blends,” Journal of applied polymer science, (1999), 71 (6), 887-895.

Shen, L., “Biocompatible polymer/quantum dots hybrid materials: current status and future developments,” Journal of Functional Biomaterials, (2011), 2 (4), 355-372.

Spanhel, L., Haase, M., Weller, H., and Henglein, A. “Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles,” Journal of the American Chemical Society, (1987), 109 (19), 5649-5655.

Sung, T. W. and Lo, Y. L., “Ammonia vapor sensor based on CdSe/SiO2 core–shell nanoparticles embedded in sol–gel matrix,” Sensors and Actuators B: Chemical, (2013), 188, 702-708.

Sung, T. W. and Lo, Y. L., “Highly sensitive and selective sensor based on silica-coated CdSe/ZnS nanoparticles for Cu2+ ion detection,” Sensors and Actuators B: Chemical, (2012), 165 (1), 119-125.

Sung, T. W. and Lo, Y. L., “Dual sensing of temperature and oxygen using PtTFPP-doped CdSe/SiO2 core–shell nanoparticles,” Sensors and Actuators B: Chemical, (2012), 173, 406-413.

Tai, K., Lü, W., Umezu, I., and Sugimura, A., “Inter-Dot Distance Dependence of Photoluminescence Properties in CdSe Quantum Dot Systems,” Applied Physics Express, (2010), 3 (3), 035202.


Vlasveld, D. P. N., Bersee, H. E. N., and Picken, S. J., “Creep and physical aging behaviour of PA6 nanocomposites,” Polymer, (2005), 46 (26), 12539-12545.

Walker, G. W., Sundar, V. C., Rudzinski, C. M., Wun, A. W., Bawendi, M. G., and Nocera, D. G., “Quantum-dot optical temperature probes,” Applied Physics Letters, (2003), 83 (17), 3555-3557.

Wang, L., Ding, T., and Wang, P., “Thin flexible pressure sensor array based on carbon black/silicone rubber nanocomposite,” IEEE Sensors Journal, (2009), 9 (9), 1130-1135.

Wang, P., and Ding, T., “Creep of electrical resistance under uniaxial pressures for carbon black–silicone rubber composite,” Journal of materials science, (2010), 45 (13), 3595-3601.

Wu, P., Zhao, T., Wang, S., and Hou, X., “Semicondutor quantum dots-based metal ion probes,” Nanoscale, (2014), 6 (1), 43-64.

Wu, Y. H., Arai, K., and Yao, T., “Temperature dependence of the photoluminescence of ZnSe/ZnS quantum-dot structures,” Physical Review B, (1996), 53 (16), R10485.

Yao, J., Zhang, K., Zhu, H., Ma, F., Sun, M., Yu, H., ... and Wang, S., “Efficient Ratiometric Fluorescence Probe Based on Dual-Emission Quantum Dots Hybrid for On-Site Determination of Copper Ions,” Analytical chemistry, (2013), 85 (13), 6461-6468.

Zhang, H. and Zhou, D., “A quantum dot-intercalating dye dual-donor FRET based biosensor,” Chemical Communications, (2012), 48 (42), 5097-5099.

Zhang, Y. H., Zhang, H. S., Ma, M., Guo, X. F., and Wang, H., “The influence of ligands on the preparation and optical properties of water-soluble CdTe quantum dots,” Applied Surface Science, (2009), 255 (9), 4747-4753.

Zhuravlev, K. K., Pietryga, J. M., Sander, R. K., and Schaller, R. D., “Optical properties of PbSe nanocrystal quantum dots under pressure,” Applied physics letters, (2007), 90 (4), 043110-043110.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw