進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2807201410294300
論文名稱(中文) 鋁蜂巢結構受軸向衝擊之潰縮行為研究
論文名稱(英文) A Study of Crushing Behavior of Aluminum Honeycombs Subjected to Axial Impact Loading Test
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 102
學期 2
出版年 103
研究生(中文) 黃培綸
研究生(英文) Pei-Lun Huang
學號 P46011204
學位類別 碩士
語文別 中文
論文頁數 82頁
口試委員 指導教授-鄭泗滄
口試委員-江達雲
口試委員-夏育群
中文關鍵字 蜂巢結構  六角形單元  平均潰縮力  擬靜態壓縮  動態衝擊 
英文關鍵字 honeycomb structure  Hexagonal cell  Mean crushing force  Quasi-static compression  Dynamic impact 
學科別分類
中文摘要 本文的研究主旨為針對鋁蜂巢結構的軸向方向,探討其受到衝擊負載下結構之動態行為模式。研究中使用商用有限元素軟體LS-DYNA進行分析,首先透過對照參考文獻數據的方式,驗證有限元素模型的邊界條件以及材料參數等設定之合理性。在靜態壓縮實驗與模擬方面,將實驗求得之潰縮應力與理論預測值進行比較,並透過實驗數據與有限元素模型驗證,比較兩者變形圖以及潰縮力與位移關係圖,結果顯示出實驗與模擬的結果相當一致。在動態衝擊實驗方面,對試片進行落錘衝擊實驗,同樣藉由與實驗數據比對驗證有限元素模型之正確性,隨後則利用驗證之有限元素模型進行幾何參數探討,計算不同的單元厚度與尺寸的蜂巢結構其能量吸收效果,此部分的參數探討則可做為設計蜂巢結構的相關依據。
另外,最後章節探討於蜂巢結構的六角形單元間填入發泡材料並進行靜態壓縮實驗,與原始結構比較兩者之潰縮力與位移關係圖並計算其能量吸收,可以發現填入發泡材料之蜂巢結構吸收能量效果有大幅度的提升。最後利用有限元素模型模擬當結構受到之衝擊負載為斜向負載時,探討蜂巢結構在不同衝擊角度下潰縮力之變化以及變形行為,結果顯示出隨著角度增加蜂巢結構之潰縮力會隨之下降,而藉由觀察其變形圖可以發現此結果與蜂巢結構的變形模式改變有相當大的關聯性。
英文摘要 SUMMARY

The major purpose of this research is to investigate the dynamic impact response of aluminum honeycomb structure subjected to an axial impact loading. The explicit solver of FEM software LS-DYNA is used in current simulation. First, through the comparison with previous works to ensure the settings of finite element model is suitable, such as boundary conditions and material parameters. In the static compression test, we will compare the crushing stress calculated in experiment and obtained by analytical solution, and also compare the simulated results with experimental results. The simulated results agree well with the experimental ones in terms of overall force/crush curves and deformation patterns. Similarly, experimental results and simulated results are compared in dynamic impact tests to check the accuracy of finite element model. The verified model may be used to compute crush energy absorption for different honeycomb cell sizes, cell wall thicknesses. Therefore, this parameter studies can be the basis of designing honeycomb structure.
Furthermore, honeycomb structures filled with polyurethane foam is investigated in last chapter. By comparing the force/crush curves with original structure and computing the energy absorption of both under static compression, a significant energy absorption improvement in foam-filled honeycomb is found. Finally, the finite element model was also used to simulate honeycomb structures under dynamic combined shear-compression. The result reveals that crushing force becomes lower as the inclined angle increases, and by observing the deformation pattern it shows that this phenomenon associated with the change of deformation mode.

Keyword : honeycomb structure、Hexagonal cell、Mean crushing force、Quasi-static compression、Dynamic impact
Introduction
論文目次 目錄
中文摘要 I
Abstract II
致謝 VI
目錄 VII
表目錄 IX
圖目錄 X
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 1
1-3 研究方法與論文架構 2
1-4 文獻回顧 3
第二章 理論背景 6
2-1 蜂巢基本皺褶模型 6
第三章 有限元素分析模型與數值驗證 26
3-1 LS–DYNA 簡介 26
3-2 基本皺褶模型受衝擊負載之數值模擬驗證 26
3-2-1 前言 26
3-2-2 有限元素模型尺寸、材料性質以及環境條件 27
3-2-3 與Gotoh文獻[5]之模擬結果驗證 28
3-3 探討含膠層與不含膠層有限元素模型對蜂巢結構潰縮力之影響 28
3-4 蜂巢結構受靜態壓縮負載之數值模擬驗證 29
3-4-1 前言 29
3-4-2 有限元素模型尺寸、材料性質以及環境條件 30
3-4-3與Levent Aktay文獻[17]之實驗數據與模擬結果驗證 30
第四章 蜂巢結構之靜態壓縮實驗與動態衝擊實驗 40
4-1 前言 40
4-2 靜態壓縮實驗 40
4-2-1 實驗配置、流程與試片介紹 40
4-2-2 靜態實驗結果與平均潰縮力計算方法 41
4-2-3 實驗結果討論與理論預測值比較 42
4-2-4 靜態壓縮實驗結果與LS-DYNA模擬結果驗證 44
4-3 動態軸向衝擊實驗 45
4-3-1 實驗設備介紹 45
4-3-2 實驗流程 46
4-3-3 實驗結果與討論 46
4-4 動態衝擊實驗結果與LS-DYNA模擬結果驗證 47
4-4-1 有限元素模型尺寸、材料性質以及環境條件 47
4-4-2 元素收斂性分析 47
4-4-3 數值模擬與實驗結果驗證 48
4-4-4 探討單元厚度、尺寸對蜂巢結構潰縮力之影響 48
第五章 蜂巢結構填入發泡對吸收能量之影響與斜向衝擊之數值模擬 64
5-1 填入發泡材料(Polyurethane foam)對結構能量吸收效果之影響 64
5-2 蜂巢結構受斜向衝擊負載之數值模擬 65
5-2-1 有限元素模型及模擬環境 65
5-2-2 數值模擬結果與討論 66
第六章 結論與未來展望 77
6-1 本文結論 77
6-2 未來展望 78
參考文獻 80
參考文獻 1. McFarland, R.K., “Hexagonal cell structures under post-buckling axial load,” AIAA Journal, 1(6) pp.1380~1385.

2.Wierzbicki, T., (1983), “Crushing analysis of metal honeycombs,” International Journal of Impact Engineering, 1(2) pp.157~174.

3. Wierzbicki, T., (1983), “On the crushing mechanics of thin-wall structures,” Journal of Applied Mechanics, 50 pp.727~734

4.Yin, Hanfeng, and Guilin Wen, (2011), “Theoretical prediction and numerical simulation of honeycomb structures with various cell specifications under axial loading,” Int J Mech Mater Des, 7 pp.253~263.

5.Gotoh, M., M. Yamashita, and A. Kawakita, (1996), “Crush behavior of honeycomb structure impacted by drop-hammer and it’s numerical analysis,” Materials Science Research International, 2(4) pp.261~266.

6.Gotoh, M., M. Yamashita, (2005), “Impact behavior of honeycomb structures with various cellspecifications – numerical simulation and experiment,” International Journal of Impact Engineering, 32 pp.618~630.

7.Aktay, L., A.F. Johnson, and B.H. Kroplin, (2008), “Numerical modeling of honeycomb core crush behavior,” Engineering Fracture Mechanics, 75 pp.2616~2630.

8.Wu, Enboa., Wu-Shung Jiang, (1997), “Axial crush of metallic honeycombs,” International Journal of Impact Engineering, 19(5-6) pp.439~459.

9.Baker, W.E., T.C. Togami, J.C. Weydert, (1998), “Static and dynamic properties of high-density metal honeycombs,” International Journal of Impact Engineering, 21(3) pp.149~163.

10.Chawla, A., S. Mukherjee, D. Kumar, T. Nakatani, and M. Ueno, (2003), “Prediction of crushing behaviour of honeycomb structures,” International Journal of Crashworthiness, 8(3) pp.229~235.

11.Goldsmith, W., G.T. Wang, and D. Crane, (1997), “Perforation of cellular sandwich plates,” International Journal of Impact Engineering, 19(5~6) pp.361~379.

12.Santosa, S., and T. Wierzbicki, (1998), “Crash Behavior of Box Columns Filled with Aluminium Honeycomb or Foam,” Computers and Structures, 68 pp.343~367.

13.Hong, Sung-Tae, J. Pan, T. Tyan, and P. Prasad, (2008), “Dynamic crush behaviors of aluminum honeycomb specimens under compression dominant inclined loads,” International Journal of Plasticity, 24 pp.87~117.

14. Santosa, S. and T. Wierzbicki, (1998), “Crash behavior of box columns filled with aluminum honeycomb or foam,” Computers and Structures, 68 pp.343~367.

15. Abdennadher, S.,B.Hou, A.Ono, S. Pattofatto, and H. Zhao, (2011), “Impact behavior of honeycombs under combined shear-compression;Part I: Experiments,” International Journal of Solids and Structures, 48 pp.687~697.

16. A.G. Mamalis, D.E. Manolakos, M.B. Ioannidis, P.K. Kostazos, and D.P. Papapostolou, (2002), “Axial collapse of hybrid square sandwich composite tubular components with corrugated core: numerical modeling,” Composite Structures, 58 pp.571~582.

17. Zhao, H. and G. Gary, (1998), “Crushing Behaviour of Aluminium Honeycomb under Impact Loading,” International Journal of Impact Engineering, 21 pp.827~ 836.

18. Doyoyo, M. and D. Mohr, (2003), “Microstructural Response of Aluminum Honeycomb to Combined Out-of-plane Loading,” Mechanics of Materials, 35 pp. 865~ 876.

19. Ahmed Abbadi, Y. Koutsawa, A. Carmasol, S. Belouettar, and Z. Azari, (2009), “Experimental and numerical characterization of honeycomb sandwich composite panels,” Simulation Modelling Practice and Theory, 17 pp.1533~1547.

20.胡純逢(2009),「薄管元件受軸向衝擊之動態行為研究」,國立成功大學航空太空工程研究所碩士論文。

21. Hexcel Corporation, (1992), Mechanical Properties of Hexcel Honeycomb Materials, TSB 120, Dublin, CA.

22.ASTM D7336/D7336M-12, “Standard Test Method for Static Energy Absorption Properties of Honeycomb Sandwich Core Materials,” ASTM, Philadelphia, PA.

23. Gibson, L. J. and Ashby, M. F. (1997), Cellular Solids: Structure and Properties, 2nd edition, Cambridge University Press, Cambridge.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw