進階搜尋


 
系統識別號 U0026-2807201215413000
論文名稱(中文) 公差與剛性對機械手臂於承載下精度之影響
論文名稱(英文) Impacts of Tolerance and Stiffness on the Accuracy of Manipulators with Payload
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 薛伊倩
研究生(英文) Yi-Chien Hsueh
學號 N16994552
學位類別 碩士
語文別 中文
論文頁數 80頁
口試委員 指導教授-詹魁元
口試委員-黃金沺
口試委員-陳家豪
中文關鍵字 機械手臂  公差  剛性  負載  精度  最佳化 
英文關鍵字 Manipulator  Tolerance  Stiffness  Payload  Accuracy  Optimization 
學科別分類
中文摘要   機械手臂已在各項產業廣泛的使用,其精度為產品加工時必須考慮的重要因素。除常見的幾何公差以及尺寸公差會影響到產品的加工精度外,機械手臂關節的剛性(Joint Stiffness)對加工精度的影響也是不容忽視的。提高機械手臂關節的剛性能夠有效的抑制外在環境不確定因素所造成的誤差,而文獻上許多相關研究將關節剛性視為無限大,然而在實際的情況下,關節剛性無法達到無限大,也因此不可忽視其對加工精度之影響。

  在精密的製造程序,機械手臂少許的誤差會造成加工失敗,所以如何改善加工精度是為一個持續受到重視且廣為探討的問題。目前改善精度的方式大多使用控制器,然而經由控制器來改善精度將提高系統成本。

  本研究主要目的是探討當機械手臂存在尺寸公差與關節剛性造成的加工誤差時,如何在不增加額外成本(控制器)的狀況下,利用加工特性的改變,提升現有機械手臂的加工精度,並進一步探討機械手臂於承載下之動態行為。

  首先本文先使用Denavit-Hartenberg齊次轉換矩陣推導出機械手臂的順逆向運動學,藉由順逆向運動學,我們便能夠得知機械手臂末端位置與關節轉角之間的關係。有了前述關係作為基礎,接著使用最佳化方法,找出單點加工時,加工誤差最小的最佳加工位置;其次,當已知加工路徑的函數形式,我們能夠經由最佳化方法找出最適合的路徑參數,使得加工點的誤差達到最小;最後,當機械手臂進行取物置物、搬運等製程時,此荷重對機械手臂之加工精度必然也產生影響,本文也將對機械手臂負重時的單點加工與加工路徑之誤差最佳化作探討。此一系統化的決策過程,不但能找出某一特定公差下之最佳加工模式,亦能協助選擇機械手臂,不但能達到成本最低,同時也兼顧了加工精度之要求。本文展示了水平式四軸機械手臂(SCARA)與垂直式六軸機械手臂(Fanuc S-900W)作為範例演示以證明研究方法之有效性。
英文摘要   Robot manipulators have been an important part of modern manufacturing processes in various industries. The precision and accuracy of these manipulators are essential in the quality and reliability of the final products. In addition to geometric and dimensional tolerances, the stiffness of robot joints that are inherent from the complex actions within a joint often dominates the precision and accuracy of a manipulator. A joint with high stiffness can effectively reduce disturbances and positioning errors from external uncertainties of the environment. Therefore a number of studies in the literature consider the stiffness of manipulator joints as infinity when planning a manufacturing scheme for a manipulator. However, in reality finite joint stiffness value might result in an unacceptable precision in many industries. Alternatively, the state-of-the-art controllers have also been used in the literature to alleviate the positioning errors from either tolerances or joint stiffness. The introduction of modern controllers also increase the manufacturing cost, therefore in this research we suggest that engineers should perform appropriate manufacturing planning of a manipulator such that the precision and accuracy is optimized with minimal added cost.

  We use the dynamics of a manipulator with and without payload to determine the optimal manufacturing scheme without controller. The Denavit-Hartenberg matrix is first used to obtain the end effector location of a robot manipulator via forward and backward kinematics. The optimal operating location with the minimal end effector dimensional variations is then calculated within a constrained working space. The process is extended to search for the optimal parameters with a known path function considering an end effector location sequence with multiple operating points. We also consider the effects of payload with dynamics in both single and multiple operation locations scenarios. The proposed method not only can improve the accuracy of a given manipulator without adding cost, it but also can be used to select manipulators within a budget. Case studies with a 4-axis horizontally selective compliant articulated robot arm (SCARA) and a 6-axis vertically articulated robot arm (Fanuc S-900W) are used to demonstrate the effectiveness of the proposed method.
論文目次 書名頁 i
論文口試委員審定書 ii
中文摘要 iii
英文摘要 iv
誌謝 vi
目錄 vii
表目錄 x
圖目錄 xii
符號說明 xiv
第一章、緒論 1
1.1前言 1
1.2研究動機與目的 2
1.3本文架構 2
第二章、研究背景與文獻回顧 4
2.1文獻分類依據 4
2.2最佳設計領域 5
2.3路徑規劃領域 6
2.4其他領域 8
2.5文獻結論 9
第三章、運動原理與理論基礎 10
3.1座標系統與參數之定義 10
3.2D-H齊次轉換矩陣 11
3.3逆向運動學 13
第四章、研究方法 18
4.1加工位置選擇對精度之影響 18
4.2無負載下之加工位置最佳化 22
4.3有負載下之加工位置最佳化 25
4.4無負載下之運動軌跡最佳化 28
4.5有負載下之運動軌跡最佳化 31
第五章、工程範例 34
5.1水平式四軸機械手臂(SCARA)34
5.1.1無負載下之加工位置最佳化 35
5.1.2有負載下之加工位置最佳化 38
5.1.3無負載下之運動軌跡最佳化 40
5.1.4有負載下之運動軌跡最佳化 43
5.2垂直式六軸機械手臂(Fanuc, S-900W)46
5.2.1逆向運動學求解 47
5.2.2無負載下之加工位置最佳化 50
5.2.3有負載下之加工位置最佳化 52
5.2.4無負載下之運動軌跡最佳化 54
5.2.5有負載下之運動軌跡最佳化 57
5.3結果討論 60
第六章、研究貢獻與未來方向 62
6.1研究貢獻 62
6.2未來研究方向 63
參考文獻 64
附錄A:SCARA動態誤差計算 66
附錄B:S-900W動態誤差計算 71
參考文獻 [1] 丁純乾與陳俊皓,「工業用機械手臂設計與專利分析」,智慧機器人技術專輯,317輯,2009。
[2] M. S. Alshamasin, F. Ionescu, and R. T. Al-Kasasbeh, "Kinematic modeling and simulation of a scara", European Journal of Scienti c Research, 37(3), 388-405, 2009.
[3] C. R. Carignan and D. L. Akin, "Cooperative control of two arms in the transport of an inertial load in zero gravty", IEEE Journal of Robotics and Automation, 4(4), 414-419, 1988.
[4] L. Chen and X. Tang, "Optimal motion planning of attitude control for space robot system with dual arms", Proceedings of the 6th World Congress on Intelligent Control and Automation, 8858-8861, 2006.
[5] C. A. Coello Coello, A. D. Christiansen, and A. H. Aguirre, "Using a new ga based multiobjective optimization technique for the design of robot arms", Robotica, 16, 401-414, 1998.
[6] H. P. Geering, L. Guzzella, S. A. R. Hepner, and C. H. Onder, "Time-optimal motions of robots in assembly tasks", IEEE Transactions on Automatic Control, AC-31(6), 512-518, 1986.
[7] S. Grahn, P. Flisberg, G. Johansson, P. Lindbergand, and T. Larsson, "TCP position tolerances in joint torque minimizations", International Conference on Intelligent Robots and Systems, 2, 800-805, 1988.
[8] G. Incerti, "Trajectory tracking for scara robots with compliant transmissions a technique to improve the positioning precision", Proceedings of the 12th IFToMM World Congress,2007.
[9] W. Owen, E. Croft, and B. Benhabib, "Sti ness optimization for two armed robotic sculpting", Industrial Robot: An International Journal, 35(1), 46-57, 2008.
[10] RobotWorx, "Fanuc S900W RJ3 Robot", http://www.welding-robots.com/fanuc.php?robot=s900w, 2012.
[11] B. K. Rout and R. K. Mittal, "Tolerance design of manipulator parameters using design of experiment approach", Structural and Multidisciplinary Optimization, 34, 445-462, 2007.
[12] S. F. P. Saramago and V.Ste en, "Optimization of the trajectory planning of robot manipulators taking into account the dynamics of the system", Mechanism and Machine Theory, 33(7), 883-894, 1998.
[13] M. Stock and K. Miller, "Optimal kinematic design of spatial parallel manipulators application to linear delta robot", Journal of Mechanical Design, 125, 292-301, 2003.
[14] L. W. Tsai, Robot Analysis, Wiley-Interscience, 1999.
[15] X. Zhang and C. A. Nelson, "Multiple criteria kinematic optimization for the design of spherical serial mechanisms using genetic algorithms", Journal of Mechanical Design, 133, 011005-1-11, 2011.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-08-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw