進階搜尋


下載電子全文  
系統識別號 U0026-2807201116223700
論文名稱(中文) 在摻雜鋁之氧化鋅奈米柱陣列透明導電薄膜表面沉積金屬硫化物奈米粒子作為光電化學電池之光電極
論文名稱(英文) Deposition of Metal Sulfide Nanoparticles on Al-doped ZnO Nanorod Arrays Thin Film as a Photoelectrode for Photoelectrochemical Cell
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 陳昭宏
研究生(英文) Chao-Hong Chen
學號 n36984137
學位類別 碩士
語文別 中文
論文頁數 94頁
口試委員 指導教授-陳東煌
口試委員-王正全
口試委員-麥守義
口試委員-溫添進
中文關鍵字 摻雜鋁氧化鋅  氧化鋅  金屬硫化物  透明導電膜  光電化學 
英文關鍵字 AZO  ZnO  metal sulfide  transparent conducting oxide  photoelectrochemistry 
學科別分類
中文摘要 本論文在氧化鋅摻雜鋁(AZO)奈米柱陣列透明導電薄膜分別沉積硫化銀及硫化鉛奈米粒子,並探討其光電化學性質。
首先在玻璃基板上旋轉塗佈由溶膠凝膠法製得之氧化鋅晶種層,然後以化學浴沉積法成長AZO奈米柱陣列薄膜,接著氫氣處理,最後以連續式離子層吸附反應(SILAR)法在表面沉積硫化銀和硫化鉛奈米粒子,探討不同沉積次數對光電化學性質的影響。經由掃描式電子顯微鏡、高解析穿透式電子顯微鏡、X射線繞射儀、及紫外線/可見光光譜儀的分析,證實AZO奈米柱陣列表面分別成功沉積了硫化銀及硫化鉛奈米粒子,其結構分別為單斜及立方最密堆積。而且,隨著金屬硫化物沉積量的增加,可見光至近紅外光區域的吸收也隨之增加。
進一步在三極式電化學系統中探討其光電化學性質,結果顯示,硫化銀及硫化鉛系統分別在SILAR循環15次及20次時可以得到最佳的光電流密度,且硫化鉛系統之光電流密度較硫化銀系統明顯為高。又硫化銀及硫化鉛系統之最大產氫效率值分別為0.34 %和0.91 %,且當波長420 nm、偏壓- 0.2 V 時的外部量子效率分別為0.79 %和5.46 %。
英文摘要 In this thesis, Ag2S and PbS nanoparticles were deposited separately on Al-doped ZnO (AZO) nanorod array transparent conductive thin films and their photoelectrochemical properties were investigated.
Firstly, sol-gel derived ZnO seed layer was coated on the glass substrate by spin-coating. Secondly, AZO nanorod array thin film was grown on the seed layer by chemical bath deposition and then treated in a hydrogen atmosphere. Finally, Ag2S and PbS nanoparticles were deposited separately on the surface of thin film by successive ion layer absorption and reaction (SILAR) method. The effect of SILAR cycle number on the photoelectro- chemical property was investigated. From the analyses of SEM, HRTEM, XRD and UV-Vis spectra, it was recognized that Ag2S and PbS nanoparticles have been successfully deposited on the surface of AZO nanorod array thin film separately and they had the monoclinic and cubic structures, respectively. Also, the absorption in the region of visible to near IR increased with the increase in the deposition amount of metal sulfide.
Further photoelectrochemical investigation in a three-electrode system revealed that the highest photocurrent densities were obtained at 15 and 20 SILAR cycles for Ag2S and PbS systems, respectively. Also, the highest photocurrent density of PbS system was significantly higher that that of Ag2S system. Furthermore, for Ag2S and PbS systems, the maximum hydrogen generation efficiencies were 0.34 % and 0.91 %,respectively, and the external quantum efficiencies at 420 nm and a bias of - 0.2 V were 0.79 % and 5.46 %, respectively.
論文目次 中文摘要......................................................I
英文摘要......................................................II
誌謝..........................................................III
總目錄........................................................IV
表目錄........................................................VIII
圖目錄........................................................IX
第一章 緒論...................................................1
1.1 透明導電膜................................................1
1.1.1 透明導電膜之簡介......................................1
1.1.2 透明導電膜之分類......................................3
1.1.3 AZO奈米柱陣列作為透明導電膜...........................5
1.2 金屬硫化物................................................6
1.2.1 硫化銀................................................6
1.2.2 硫化鉛................................................8
1.2.3 以金屬硫化物敏化光電極之應用..........................11
1.3 研究動機與目標............................................13

第二章 基礎理論...............................................14
2.1 溶膠-凝膠合成法...........................................14
2.1.1 概論..................................................14
2.1.2 水解..................................................16
2.1.2.1 無機金屬鹽類之水解機制............................16
2.1.2.2 金屬醇氧化物之水解機制............................16
2.1.3 聚縮合................................................17
2.1.3.1 無機金屬鹽類的聚縮合..............................17
2.1.3.2 金屬醇氧化物的聚縮合..............................18
2.2 旋轉塗佈..................................................19
2.3 以水溶液法合成氧化鋅一維奈米結構..........................20
2.3.1 概論..................................................20
2.3.2 文獻回顧..............................................22
2.4 退火處理..................................................24
2.5 連續式離子層吸附與反應法..................................25
2.6 透明導電膜原理............................................28
2.6.1 導電原理..............................................28
2.6.2 光學原理..............................................30
2.7 光電化學原理..............................................34
2.7.1 概論..................................................34
2.7.2 半導體光電化學電池....................................35
2.7.3 光電化學產氫..........................................39

第三章 實驗步驟與藥品.........................................41
3.1 實驗藥品、材料與實驗儀器..................................41
3.1.1 實驗藥品..............................................41
3.1.2 實驗儀器..............................................42
3.1.3 分析材料試片..........................................43
3.2 實驗步驟..................................................44
3.2.1 製備氧化鋅奈米粒子作為晶種層來源......................45
3.2.2 將氧化鋅晶種層旋轉塗佈於玻璃基板......................45
3.2.3 成長一維氧化鋅摻雜鋁奈米柱陣列........................45
3.2.4 氫氣處理..............................................46
3.2.5 以連續式離子層吸附與反應法沉積硫化銀奈米粒子..........46
3.2.6 以連續式離子層吸附與反應法沉積硫化鉛奈米粒子..........47
3.2.7 製備光電化學之光電極…................................49
3.3 特性分析..................................................50

第四章 結果與討論.............................................52
4.1 沉積金屬硫化物之氧化鋅摻雜鋁奈米柱陣列薄膜................52
4.1.1 不同SILAR次數的AZO NRAs/MS薄膜表面型態分
析..........................................................52
4.1.2 不同SILAR次數的AZO NRAs/MS薄膜的XRD分
析..........................................................57
4.1.3不同SILAR次數的AZO NRAs/MS薄膜的EDS分析................62
4.1.4 AZO NRAs/MS的HRTEM分析................................65
4.1.5 不同SILAR次數的AZO NRAs/MS薄膜的UV-Vis
分析..........................................................68
4.2 光電化學分析..............................................71
4.2.1 不同SILAR次數的AZO NRAs/MS薄膜的光電化學
分析........................................................71
4.2.2 氫氣處理對光電流值的影響..............................78
4.2.3 產氫效率的計算........................................80
4.2.4 光電轉換效率量測(IPCE) ...............................83

第五章 結論...................................................85
參考文獻......................................................86
自述..........................................................94
參考文獻 1.K.L. Chopra, S. Magor, and D.K. Pandya, Thin Solid Films, 102, 1 (1983)
2.曲喜新、楊邦朝、姜節儉、張懷武,“電子薄膜材料”,北京科學出版社 (1996)
3.吳坤陽,“溶凝膠法製備含銀之AZO透明導電膜的研究”,國立成功大學化學工程所碩士論文 (2005)
4.A.J. Freeman, K.R. Poeppelmeier, and T.O. Mason, R.P.H. Chang, and T. J. arks, MRS Bull., Aug., 45 (2000)
5.楊明輝,”工業材料”,179,134 (1999)
6.R. Wang, A. Sleight, and R. Gardner, J. Mater. Res., 11, 1659 (1996)
7.T.Minami, T. Takumu, and S. Takata, J. Vac. Sci. Technol. A, 14, 1704 (1996)
8.Z.Q. Xu, H. Deng, Y Li, Q.H. Guo, and Y.R. Li, Mater. Res. Bull., 41, 354 (2006)
9.T.O. Mason, R.P.H. Chang, T.J. Mark, and K.R. Poeppelmeier, “Improved Transparent Conducting Oxides for Photovoltaics”, Final Research Report, NorthwesternUniversity, Evanston, Illinois, (1may 1999-31Dec. 2002)
10.M.M. Bagheri-Mohagheghi and M. Shokooh-Saremi, Semicond. Sci. Technol., l8, 97 (2003)
11.D. Song, J. Xia, E.C. Cho, and A.G. Aberie, Photovoltaics Special Research Centre, University of New South Wales, UNSW Sydney NSW2052,Australia
12.G.B. Palmer, K.R. Poeppelmeier, and T.O. Mason, Chem. Mater., 9, 3121 (1997)
13.Z.Q. Xu, H. Deng, Y. Li, Q.H. Guo, and Y.R. Li, Mater. Res. Bull., 41 354 (2006)
14.W. Tang and D.C Cameron, Thin Solid Films, 238, 83 (1994)
15.O. Bamiduro, H. Mustafa, R. Mundle, R.B. Konda ,and A.K. Pradhan, Appl. Phys. Lett., 90, 252108 (2007)
16.P. Kadam, C. Agashe ,and S.J. Mahamuni, J. Appl. Phys., 104, 103501 (2008)
17.K.Y. Wu, C.C. Wang ,and D.H. Chen, Nanotechnology, 18, 305604 (2007)
18.M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P.D. Yang, Nature Mater., 4, 455 (2005)
19.L.E. Greene, M. Law, J.H. Goldberger, F. Kim, J.C. Johnson, Y.F. Zhang, R. Saykally ,and P.D. Yang, Angew. Chem. Int.Ed., 42, 3031 (2003)
20.L. Vayssieres, Adv. Mater., 15, 464 (2003)
21.R. Deng, Y. Zou, Z. Chen, G. Jiang ,and H. Tang, Mater. Lett., 61, 3582 (2007)
22.S. Cho, S.H. Jung, J.W. Jang, E. Oh ,and K.H. Lee, Cryst. Growth Des., 8, 4553 (2008)
23.C.H. Hsu and D.H. Chen, Nanotechnology, 21, 285603 (2010)
24.S.H. Lee, T.S. Lee, K.S. Lee, B. Cheong, Y.D. Kim ,and W.M. Kim, J. Phys. D: Appl. Phys., 41, 095303 (2008)
25.P. Rahlfs, Z. Phys. Chem. B, 31, 157 (1935)
26.R.J. Cava, F. Reidinger,and B.J. Wuensh, J. Solid State Chem., 31, 69 (1980)
27.S. Kashida, N. Watanabe, T. Hasegawa, H. Iida,and M. Mori,and S. Savrasov, Solid State Ionics, 158, 167 (2003)
28.D.J. Vaughan and J.R Craig,”Mineral Chemistry of Metal Sulfides”, Cambridge University Press (1978)
29.S. Miyatani, J. Phys. Soc. Jpn., 10, 786 (1955)
30.P. Junod, H. Hediger, B. Kilchor, and J. Wullschleger, Philos. Mag., 36, 941 (1977)
31.H. Dlala, M. Almuok, S. Belgacem, P. Girard, and D. Barjon, Eur. Phys. J. A, 2, 13 (1998)
32.A.K. Abass, Solar Energy Mater, 17, 375 (1988)
33.K.D. Lae, and Y.H. Ill, Solid State Ionics, 81, 135 (1976)
34.J. Eneva. S. Krrova, A. Panov, and H. Haefke,“Gas Phase and Surface Chemistry in Electronic Materials Processing”, Pittsburg, 265 (1994)
35.X.S. Peng, G.W. Meng, J. Zhang, X.F. Wang, L.X. Zhao, Y.W. Wang,and L.D. Zhang, Mater. Res. Bull., 37 1369 (2002)
36.C.H. Liang, K. Terabe, T. Hasegawa, and M. Aono, Nanotechnology, 18, 485202 (2007)
37.Y. Ofir, B. Samanta, Q.J Xiao, B.J. Jordan, H. Xu, P. Arumugam, R. Arvizo, M.T. Tuominen, and V.M. Rotello, Adv. Mater., 20, 2628 (2008)
38.L. Dloczik and R. Koenenkamp, J. Solid State Eletrochem., 8, 142 (2004)
39.Z.B Zhuang, Q. Peng, X. Wang, and Y.D. Li, Angew. Chem. Int. Ed., 46, 8174 (2007)
40.K. Nagasuna, T. Akita, M. Fujishima, and Hi. Tada, Langmuir, 27, 7294 (2011)
41.A. Tubtimtae, K.L. Wu, H.Y. Tung, M.W. Lee, and G.J. Wang, Electrochem. Commun., 12, 1158 (2010)
42.Y. Xie, S.H. Heo, Y.N. Kim, S.H. Yoo, and S.O. Cho, Nanotechnology, 21, 015703 (2010)
43.F.C. Meldrum, J. Flath, and W. Knoll, Thin Solid Films, 348, 188 (1999)
44.T.S. Moss, Proc. IRE, 43, 1869 (1955)
45.R.A. Oronzo-Teraz, M. Sotelo-Lerma, R. Ramirez-Bon, M.A. Quevedo-Lopez, O. Mendoza-Gonzalez, O. Zelava-Angel, Thin Solid Films, 587, 343 (1999)
46.J.B Gao, J.M. Luther, O.E. Semonin, R.J. Ellingson, A.J. Nozik, and M.C. Beard, Nano Lett., 11, 1002 (2011)
47.S. Ruhle, A. Zaban, and M. Shalom, ChemPhysChem, 11, 2290 (2010)
48.H.J. Lee, P. Chen, S.J. Moon, F. Sauvage, K. Sivula, T. Bessho, D.R. Gamelin, P. Comte, S.M. Zakeeruddin, S.I. Seok, M. Gratzel, and M.K. Nazeeruddin, Langmuir, 25, 7602 (2009)
49.D.R. Baker and P.V. Kamat, J. Phys. Chem. C, 113, 17967 (2009)
50.D.R. Baker and P.V. Kamat, Adv. Funct. Mater., 19, 805 (2009)
51.S. Hotchandani and P.V. Kamat, Chem. Phys. Lett., 191, 320 (1992)
52.Y. Tak, S.J. Hong, J.S. Lee, and K. Yong, J. Mater. Chem., 19, 5945 (2009)
53.W. Lee, S.K. Min, V. Dhas, S.B. Ogale, and S.H. Han, Electrochem. Commun., 11, 103 (2009)
54.G.M. Wang, X.Y Yang, F. Qian, J.Z. Zhang, and Y.Li, Nano Lett., 10, 1088 (2010)
55.Y. Jin-nouchi, T. Hattori, Y. Sumida, M. Fujishima, and H. Tada, ChemPhysChem, 11, 3592 (2010)
56.B. Jirhennsons, M. E. Straumanis, “Colloid Chemistry”, McMillan Co. New York (1962)
57.“sol-gel technologies and their products”, http://www.chemat.com/, CHEMAT Technology, Inc.
58.C. J. Brinker, and G. W. Scherer, “Sol-gel Science: the physics and chemistry of sol-gel processing”, Academic Press, Inc. (1990)
59.張湘瑜,”摻雜鎵之氧化鋅奈米柱薄膜的合成及特性研究”, 國立成功大學化學工程所碩士論文 (2009)
60.吳景輝,”含銀AZO透明導電膜及AZO@Au奈米粉體之研究”, 國立成功大學化學工程所碩士論文 (2007)
61.D.E. Bornside, C.W. Macosko, and L.E. Scriven, J. Imaging Tech., 13, 122 (1987)
62.L.E. Greene, B.D. Yuhas, M. Law, D. Zitoun, and P.D Yang, Inorg. Chem., 45, 7535 (2006)
63.Q.Li, V. Kumar, Y.Li, H. Zhang, T.J. Marks, and R.P.H. Chang, Chem. Mater., 17, 1001 (2005)
64.L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, Nano Lett., 5, 1231 (2005)
65.K. Govender, D.S. Boyle, P.B. Kenway, and P.O’Brien, J. Mater. Chem., 14, 2575 (2004)
66.R.W. Nosker, P. Mark, and J.D. Levine, Surf. Sci., 19, 291 (1970)
67.K. Govender, D.S. Boyle, P.B. Kenway, and P.J. O’Brien, Mater. Chem, 14, 2575 (2004)
68.S. Yamabi and H. J. Imai, Mater. Chem., 12, 3773 (2002)
69.A. Chittofrati and E. Matijevic, Colloids Surf., 48, 65 (1990)
70.R.A. McBride, J.M. Kelly, and D.E. McCormack, J. Mater. Chem., 13, 1196 (2003)
71.R.B. Peterson, C.L. Fields, and B.A. Gregg, Langmuir, 20, 5114 (2004)
72.M.A. Verges, A. Mifsud, C.J. Serna, J. Chem. Soc., Faraday Trans., 86, 959 (1990)
73.K.S. Chou, W.H.Chen, C.S. Huang, J. Chin. Inst. Chem. Eng.,21, 327 (1990)
74.S. Music, S. Popovic, M. Maljkovic, E. Dragcevic, J. Alloys Compd., 347, 324 (2002)
75.P. Obrien, T. Saeed, J. Knowles, J. Mater. Chem., 6, 1135 (1996)
76.T. Trindade, J.D.P. Dejesus, P.J. Obrien, Mater. Chem., 4, 1611 (1994)
77.H. Zhang, D.R.Yang, X.Y. Ma, and D.L. Que, J. Phys. Chem. B, 109, 17055 (2005)
78.Y. Sakka, K. Halada, and E. Ozawa, Ceram. Trans., 1, 31 (1988)
79.M. Guo, P. Diao, and S.M. Cai, J. Solid State Chem., 178, 1864 (2005)
80.C.H. Hung, and W.T. Whang, Mater. Chem. Phys., 82, 705 (2003)
81.S. Ezhilvalavan and T.R.N. Kutty, Appl. Phys. Lett., 69, 3540 (1996)
82.L. Spanhel, and M.A. Anderson, J. Am. Chem. Soc., 113, 2826 (1991)
83.L. Vayssieres, K. Keis, S.E. Lindquist, and A. Hagfeldt, J. Phys. Chem. B., 105, 3350 (2001)
84.L. Vayssieres, K. Keis, A. Hagfeldt, and S.E. Lindquist, Chem. Mater., 13, 4395 (2001)
85.C. Pacholski, A. Kornowski, and H. Weller, Angew. Chem. Int. Ed., 41, 1188 (2002)
86.B. Liu, and H.C. Zeng, Langmuir, 20, 4196 (2004)
87.Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, and M.J. Mcdermott, J.Am. Chem. Soc., 124, 12954 (2002)
88.Y. Tak and K. Yong, J. Phys. Chem. B, 109, 19263 (2005)
89.K. Govender, D.S. Boyle, P.B. Kenway, and P. O'Brien, J. Mater. Chem., 14, 2575 (2004)
90.C.G. Van de Walle, Phys. Rev. Lett., 85, 1012 (2000)
91.P. Nunes, E. Fortunato, and R. Martins, Thin Solid Films, 383, 277 (2001)
92.P. Sagar, M. Kumar, and R.M. Mehra, Thin Solid Films, 489, 94 (2005)
93.R. Ghosh, G.K. Paul, and D. Basak, Mater. Res. Bull., 40, 1905 (2005)
94.M. Ohyama, H. Kozuka, and T. Yoko, Thin Solid Films, 306, 78 (1997)
95.H.M. Pathan and C.D. Lokhande, Bull. Mater. Sci., 27 85 (2004)
96.楊明輝,”透明導電膜”,藝軒圖書出版社 (2006)
97.J.R. Bellingham, W.A. Phillips, and C.J. Adkins, J. Mater. Sci. Lett., 11, 263 (1992)
98.I. Hamberg and C.G. Granqvist, J. Appl. Phys., 60, R123 (1986)
99.M.A. Archer, A.J. Nozik, “Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion”, Imperial College Press, March (2008)
100.H.O. Finkdea (ED.), “Semiconductor Electrodes”, P. 2, Elsevier Science 110 Publishing Co. Inc., New York (1998)
101.M. Gratzel, Nature, 414, 15 (2001)
102.T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Int. J. Hydrogen Energy, 27, 991 (2002)
103.J. Nowotny, C.C. Sorrell, T. Bak, and L.R. Sheppard, Sol. Energy, 78, 593 (2005)
104.S.N. Frank and A.J. Bard, J. Electrochem. Soc., 125, 246 (1978).
105.R.N. Noufi, R.N. Noufi, P.A. Kohl, S.N. Frank, and A.J. Bard, J. Electrochem. Soc., 125, 246 (1978).
106.M.A. Butler and D.S. Ginley, J. Mater. Sci., 15, 1 (1980)
107.A.J. Bard and M.S. Wrighton, J. Electrochem. Soc., 124, 1706 (1977)
108.B.R Hyun, Y.W. Zhong, A.C. Bartnik, L.F Sun, H.D. Abruna, F.W. Wise, J.D. Goodreau, J.R. Matthews,T.M. Leslie, and N.F. Borrelli, ACS nano, 2, 2206 (2008)
109.Q. Kang, S.H Liu, L.X Yang, Q.Y. Cai, and C.A. Grimes, Appl. mater. Interfaces, 3, 746 (2011)
110.S.M. Yang, Z.S. Wang, C.H. Huang, Synth. Met, 123, 267 (2001)
111.P. Hoyer and R. Konenkamp, Appl. Phys. Lett., 66, 349 (1995)
112.G..M. Wang, X.Y. Yang, F. Qian, J.Z. Zhang, and Y. Li, Nano Lett, 10, 1088 (2010)
113.K. Ogisu, K. Takanabe, D. Lu, M. Saruyama, T. Ikeda, M. Kanehara, T. Teranishi, K. Domen, Bull. Chem. Soc. Jpn., 82, 528 (2009)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw