進階搜尋


 
系統識別號 U0026-2807201115002100
論文名稱(中文) 以分子標記探討台灣小蹄鼻蝠的食性
論文名稱(英文) Dietary investigation of Formosan horseshoe bat (Rhinolophus monoceros) based on molecular markers
校院名稱 成功大學
系所名稱(中) 生命科學系碩博士班
系所名稱(英) Department of Life Sciences
學年度 99
學期 2
出版年 100
研究生(中文) 呂佩樺
研究生(英文) Pei-Hua Lu
學號 L5697109
學位類別 碩士
語文別 中文
論文頁數 63頁
口試委員 指導教授-蔣鎮宇
口試委員-李亞夫
口試委員-林鳳嬌
中文關鍵字 DNA條碼  台灣小蹄鼻蝠  食性  超音波  COI 
英文關鍵字 DNA barcoding  COI  Rhinolophus monoceros  dietary  echolocation 
學科別分類
中文摘要 蝙蝠是唯一會飛行的哺乳動物,在夜晚出沒,多數有回聲定位能力,即俗稱的超音波,用以判斷周遭環境及偵測獵物。過去研究蝙蝠的食性中,常以顯微鏡觀察蝙蝠排遺中的昆蟲殘骸並加以分類。但此方法在研究上卻有許多難以突破的瓶頸,如排遺中僅有少數碎屑殘留,常連科別亦無法分辨,因此少有將蝙蝠食性分類至科以下的相關文獻。根據排遺中碎屑的觀察,已知台灣小蹄鼻蝠(Rhinolophus monoceros)多以夜行性鱗翅目昆蟲為主要食物來源。過去野外調查結果發現台灣中小型鱗翅目昆蟲中蛾類有6大總科,其中具有簡單聽器的有夜蛾總科之夜蛾科、燈蛾科、舟蛾科,和衣蛾總科的衣蛾科。而具有完整聽器的有尺蛾總科尺蛾科以及螟蛾總科,不具聽器的有麥蛾總科草潛蛾科和捲葉蛾總科。本研究希望藉由cytochrome c oxidase I (COI)作為DNA條碼,研究台灣中部惠蓀林場和蓮華池附近台灣小蹄鼻蝠排遺中的蛾類和其分類,並證實台灣小蹄鼻蝠可以吃到具有聽器的蛾類。本論文建構113種蛾類DNA條碼作為資料庫,並從包括台灣小蹄鼻蝠(Rhinolophus monoceros)之六種蝙蝠共19隻個體之樣本所定序的排遺COI序列,再加上從NCBI上現有的鱗翅目昆蟲COI序列共同進行親緣關係分析,最後計算出排遺中各科蛾類的出現頻度(FO)。結果顯示,台灣小蹄鼻蝠(Rhinolophus monoceros)共15隻個體排遺中有定序出蛾類COI序列的有10隻個體排遺,共鑑定出5科32筆共21種蛾類COI序列,其中有具發達聽器的尺蛾科蛾類共7筆5種;其他5種蝙蝠共48隻蝙蝠個體中有9隻5種蝙蝠定序出蛾類COI序列,總共定序出24筆14種蛾類COI序列,其中有具發達聽器的尺蛾科蛾類共4筆2種,大都是編號052410的青尺蛾。綜合以上結果可以推論,以分子標記方法配合親緣關係樹分析,可以較深入的研究蝙蝠的食性至少到科以下,而研究發現台灣小蹄鼻蝠可以吃到許多具有聽器的蛾類,其中也包含聽器發達的尺蛾科。
英文摘要 Bats are the only mammals that can fly in the dark. Most of them have the abilities to detect preys and environments by echolocation. In the previous studies of dietary in bats, biologists always used microscopes to find in feces what the remains are and which orders the remains belong. However, there were so many problems that they faced. The most inconvenient problem was that the remains in feces were too few to classify, especially in families or species. Therefore, many further problems were still remained to be solved. By using microscopes, Rhinolophus monoceros that the species I studied were considered to be fed by moths. Thus, I classified six superfamilies from moths that are usually seen. Noctuoidea that Noctuidae, Arctiidae, and Notodontidae belongs to and Tineoidea are considered to have the simple ears. Geometridae, which is classified in Geometroidea, and Pyraloidea are considered to have the complete ears. Gelechioidea as well as Tortricoidea are considered to hve no ears. The purposes of this study were to find what Rhinolophus monoceros eat and to classify the remains in families or species by using DNA barcodings (cytochrome c oxidase I, COI). First of all, I constructed 113 DNA barcodings from moths. Then, DNA barcodings of ten individuals of Rhinolophus monoceros, and other 5 bat species (9 individuals) were done to analysis. I also constructed phylogeny trees by using NCBI databases and all DNA barcodings in my study, so that I can classify the unknown sequences into different families or superfamilies. At the end, I caculated frequency of occurrence (FO) from every families in feces. The results revealed that we can study dietary of bats by using molecular markers and phylogeny trees. There are 21 species of moths in the feces from 10 Rhinolophus monoceros individuals. However, there are 5 species that have complete ears. All of them are in the family of Geometridae. On the other hands, there are 14 species of moths in the feces of 9 individauls from different kinds of bats. (not Rhinolophus monoceros) And, there are 2 moth species that have complete ears. All of them are in the family of Geometridae. But most of them are in the subfamily of Geometrinae. From those results, I concluded that we can use DNA barcodings as well as phylogeny trees to research dietary of bats, especially in different families of moths. We also found that Rhinolophus monoceros can capture heard moths.
論文目次 中文摘要………………1
英文摘要………………2
致謝………………4
目錄………………5
表目錄………………7
圖目錄………………8
第壹章 前言
一、蝙蝠與台灣小蹄鼻蝠簡介………………9
二、台灣小蹄鼻蝠的超音波與回聲定位………………10
三、動物的DNA條碼(DNA barcode)………………11
四、以COI進行鱗翅目昆蟲分屬或科的相關研究………………12
五、分子生物學方法進行食性分析的優缺點………………12
六、台灣的蛾與分類………………13
七、蛾的聽器………………14
八、台灣葉鼻蝠、大足寬吻鼠耳蝠、隱姬管鼻蝠、台灣家蝠、台灣彩蝠簡介………………15
九、蝙蝠和蛾的交互作用(BM interactions)………………16
十、本篇研究目的………………17
第貳章 材料與方法
一、實驗樣本及DNA萃取………………20
二、COI序列phylogeny分析………………22
三、資料統計與分析………………22
第參章 結果
一、台灣關刀溪一帶蛾類採集結果及DNA條碼………………23
二、蛾類COI和蝙蝠排遺序列的phylogeny tree ………………23
三、蝙蝠排遺COI序列與DNA條碼資料庫比對結果………………24
四、關刀溪一帶三種蝙蝠排遺中不同科的出現頻度(FO) ………………27
第肆章 討論
一、蝙蝠與蛾………………28
二、在食性研究上分子生物學比較傳統方法的優缺點討論………………32
三、與近年來利用分子標記探討蝙蝠食性的相關研究進行比較………………35
第伍章 結論………………36
第陸章 參考資料………………37
表………………44
圖………………57
參考文獻 (一)文獻與書籍
易希陶。(1976)。昆蟲分類學。國立編譯館。290-349頁。
張保信。(1989)。臺灣蛾類圖說(一)。臺灣省立博物館。
張保信。(1989)。臺灣蛾類圖說(二)。臺灣省立博物館。
張保信。(1990)。臺灣蛾類圖說(三)。臺灣省立博物館。
張保信。(1990)。臺灣蛾類圖說(四)。臺灣省立博物館。
張保信。(1991)。臺灣蛾類圖說(五)。臺灣省立博物館。
傅建明,左漢榮,程文香。(1995)。八仙山地區蛾類之調查研究。臺中縣太平鄉坪林國小。
陳湘繁。(1995)。陽明山地區共域性台灣葉鼻蝠及台灣小蹄鼻蝠之活動模式與食性。國立台灣大學碩士論文。
楊勝惠。(1995)。雲林地區渡瀨氏鼠耳蝠和東亞家蝠的活動模式及食性研究。國立台灣大學碩士論文。
林良恭,李玲玲,鄭鍚奇。(1997)。台灣的蝙蝠。國立自然科學博物館。
祁偉廉。(1998)。台灣的哺乳動物 野外探險實用大圖鑑。天下文化出版。
趙念民。(2001)。利用回聲定位叫聲特性鑑別東亞家蝠、摺翅蝠、台灣葉鼻蝠和台灣小蹄鼻蝠之研究。國立中山大學碩士論文。
唐 威爾森。(2002)。蝙蝠Q&A 認識蝙蝠的真面目。大樹出版。
顏聖紘。(2003)。台灣的衣蛾倒底是哪一種?。台灣昆蟲通訊。(2):1-2。
周政翰。(2004)。台灣地區鼠耳蝠屬分類地位。私立東海大學碩士論文。
張恒嘉。(2006)。金黃鼠耳蝠於雲林地區的棲所選擇。私立靜宜大學碩士論文。
江集鯉。(2006)。新竹白蘭地區台灣彩蝠(Kerivoula sp.)食性與覓食策略之研究。國立台灣大學碩士論文。
吳建廷。(2007)。台灣地區家蝠屬蝙蝠的分類學研究。國立嘉義大學碩士論文。
楊智安。(2008)。台灣彩蝠的族群遺傳結構與親緣地理學之研究。國立嘉義大學碩士論文。
邵廣昭,彭鏡毅,吳文哲。(2008)。台灣物種多樣性 - I.研究現況。行政院農業委員會林務局,台北。273-278。
陳柏彥。(2009)。衣蛾(Phereoeca uterella)生物學與造巢取材之偏好性分析。國立台灣大學碩士論文。
王麗嘉,王馨懋,胡伯齊,林芸安,張庭維,賴靖婷,鄭伃珊。(2009)。玉山國家公園共域性食蟲蝙蝠之族群監測及覓食生態研究。玉山國家公園管理處委託研究報告。
鄭錫奇,方引平,周政翰。(2010)。台灣的蝙蝠圖鑑。國立自然科學博物館。
Agusti N, Shayler SP, Harwood JD, Vaughan IP, Sunderland KD and Symondson WOC (2003) Collembola as alternative prey sustaining spiders in arable ecosystems: prey detection within predators using molecular markers. Molecular Ecology, 12, 3467–3475.
Annemarie S, Yack JE, Spence AJ and Hasenfuss I (2003) Hearing in hooktip moths. (Drepanidae: Lepidoptera) The Journal of Experimental Biology, 206, 2653-2663.
Blankenship LE and Yayanos AA (2005) Universal primers and PCR of gut contents to study marine invertebrate diets. Molecular Ecology, 14, 191–899.
Clare EL, Fraser EE, Braid HE, Fenton MB, Hebert PDN (2009) Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis):using a molecular approach to detect arthropod prey. Molecular Ecology, 18, 2532–2542.
Clare EL, Barber BR, Sweeney BW, Hebert PDN and Fenton MB (2011) Eating local: influences of habitat on the diet of little brown bats (Myotis lucifugus). Molecular Ecology, 20, 1772-1780.
Davis DR (1998) A World Classification of the Harmacloninae, a New Subfamily of Tineidae. (Lepidoptera: Tineoidea) Smithsonian contributions to zoology, 597, 1-81.
Davis MD (1998) A revision of the genus Lamyristis Meyrick (Lepidoptera : Psychidae) and proposal of a new related genus Acoremata from Southeast Asia. Proceedings of the entomological society of Washington, 100, 114-125.
Faure PA & Hoy RR (2000) The sounds of silence: cessation of singing and song pausing are ultrasound-induced acoustic startle behaviors in the katydid Neoconocephalus ensiger (Orthoptera; Tettigoniidae). J. Comp. Physiol. A, 186, 129—142.
Fullard JH (1988) The tuning of moth ears. Birkh/iuser Verlag Basel, 44, 423-428.
Fullard JH, Simmons JA, Saillant PA (1994) Jamming bat echolocation: the dogbane tiger moth Cycnia tenera times its clicks to the terminal attack calls of the big brown bat Eptesicus fuscus. Journal of Experimental Biology, 194, 285–298.
Garnier JN, Bruford MW, Goossens B (2001) Mating system and reproductive skew in the black rhinoceros. Molecular Ecology, 10, 2031–2041.
Hebert PDN, Ratsingham S, Dewaard JR (2003a) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London Series B-biological Sciences, 270, S96-S99.
Hebert PDN, Cywinska A, Ball SL and deWaard JR (2003b) Biological identifications through DNA barcodes. The Royal Society, 270, 313-321.
Hebert PDN, Penton EH, Burns JM,Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 101(41), 14812-14817.
Heffner HE (1998) Auditory awareness. Applied Animal Behaviour Science, 57, 259-268.
Heppner JB (1998) Classification of Lepidoptera. Part 1. Introduction. Holarctic Lepid., Gainesville, FL5(Supplement 1), i-iv, 1-148 + 1-6 (index).
Holloway JD, Bradley JD, and Carter DJ (1987) CIE guides to insects of importance to man. 1. Lepidopteran. C.A.B. International, London.
Kenagy GJ (1973) Daily and seasonal patterns of activity and energetics in a heteromyid rodent community. Ecology, 54, 1201-1219.
Kristensen NP (Ed.) (1999) Lepidoptera, Moths and Butterflies. Volume 1: Evolution, Systematics, and Biogeography. Handbuch der Zoologie. Eine Naturgeschichte der Stämme des Tierreiches / Handbook of Zoology. A Natural History of the phyla of the Animal Kingdom. Band / Volume IV Arthropoda: Insecta Teilband / Part 35: 491 pp. Walter de Gruyter, Berlin, New York.
Kuo HC, Fang YP, Csorbag, Lee LL (2009) Three New Species of Murina (Chiroptera: Vespertilionidae) from Taiwan. Journal of Mammalogy, 90 (4), 980-991.
Linares MC, Soto-Calderón ID, Lees DC, Anthonyet NM (2009) High mitochondrial diversity in geographically widespread butterflies of Madagascar: A test of the DNA barcoding approach. Molecular Phylogenetics and Evolution, 50(3), 485-495.
Lukhtanov VA, Sourakov A, Zakharov EV, Hebert PDN (2009) DNA barcoding Central Asian butterflies: increasing geographical dimension does not significantly reduce the success of species identification. Molecular Ecology Resources, 9(5), 1302-1310.
Neuweiler G (2003) Evolutionary aspects of bat echolocation. Journal of Comparative Physiology. Part A. Sensory, Neural, and Behavioral Physiology, 189, 245-256.
Nye IWB & Fletcher DS (1991) Generic Names of Moths of the World. 6, 368 pp. Trustees of the British Museum (Natural History), London.
Ratcliffe JM, Fullard JH (2005) The adaptive function of tiger moth clicks against echolocating bats: an experimental and synthetic approach. Journal of Experimental Biology, 208, 4689–4698.
Ratcliffe JM, Soutar AR, Muma KE, Guignion C, Fullard JH (2008) Anti-bat flight activity in sound-producing versus silent moths. Canadian Journal of Zoology, 86, 582–587.
Ratcliffe JM, Fullard JH, Arthur BJ and Hoy RR (2010) Adaptive auditory risk assessment in the dogbane tiger moth when pursued by bats. The Royal Society, 278, 364-370.
Ratnasingham S, Hebert PDN (2007) BOLD: The Barcode of Life Data System (http://www.barcodinglife.org ) Molecular Ecology, 7, 355-364.
Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R (2005) Towards writing the encyclopedia of life: an introduction to DNA barcoding. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360, 1805–1811.
Schmidt BC and Sperling FAH (2008) Widespread decoupling of mtDNA variation and species integrity in Grammia tiger moths. (Lepidoptera: Noctuidae) Systematic Entomology, 33, 613-634.
Schmidt BC (2009) Taxonomic revision of the genus Grammia Rambur. (Lepidoptera: Noctuidae: Arctiinae) Zoological Journal of the Linnean Society, 156, 507–597.
Schnitzler HU, Kalko EKV (2001) Echolocation by insect-eating bats. Bioscience, 51, 557-569.
Sheppard SK, Henneman ML, Memmott J, Symondson WOC (2004) Infiltration by alien predators into invertebrate food webs in Hawaii: a molecular approach. Molecular Ecology, 13, 2077–2088.
Simmons JA, Fenton MB, MJ O'Farrell (1979) Echolocation and pursuit of prey by bats. Science, 203, 16-21.
Song H, Buhay JE, Whiting MF, and Crandall KA (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences of the United States of America, 105, 13486–13491.
Spangler HG (1988) Moth Hearing, Defense, and Communication. Annual Reviews Entomol, 33, 59-81.
Symondson WOC (2002) Molecular identification of prey in predator diets. Molecular Ecology, 11, 627–641.
Waters DA, Rydell J, Jones G (1995) Echolocation call design and limits on prey size: a case study using the aerial-hawking bat Nyctalus leisleri. Behav Ecol Sociobiol, 37, 321-328.
Whittier CA, Dhar AK, Stem C, Goodall J, Alcivar-Warren A (1999) Comparison of DNA extraction methods for PCR amplification of mitochondrial cytochrome c oxidase subunit II (COII) DNA from primate fecal samples. Biotechnology Techniques, 13, 771–779.
Wu CG, Han HX, Xue DY (2009) A pilot study on the molecular phylogeny of Drepanoidea (Insecta: Lepidoptera) inferred from the nuclear gene EF-1α and the mitochondrial gene COI. Bulletin of entomological research, 100, 1-10.
Yager DD (1999) Structure, development, and evolution of insect auditory systems. Microscopy research and Technique, 47, 380-400.
Zaidi RH, Jaal Z, Hawkes NJ, Hemingway J, Symondson WOC (1999) Can multiple-copy sequences of prey DNA be detected amongst the gut contents of invertebrate predators? Molecular Ecology, 8, 2081–2087.
Zeale MRK, Butlin RK, Barker GLA, Lees DC and Jones G (2011) Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Molecular Ecology Resources, 11, 236–244.
(二) 網站
倫敦自然史博物館資料庫
http://www.nhm.ac.uk/research-curation/research/projects/butmoth/
維基百科
http://zh.wikipedia.org/zh-hant/%E9%B1%97%E7%BF%85%E7%9B%AE
BOLD
http://www.boldsystems.org/views/login.php
TAIBNET台灣物種名錄
http://taibnet.sinica.edu.tw/home.php
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw