系統識別號 U0026-2807201015564700
論文名稱(中文) 運動訓練與停止運動訓練對第一型糖尿病鼠之心肺系統在脂多醣誘發內毒血症過程中介白素-6、介白素-10及細胞凋亡的影響
論文名稱(英文) Effects of Exercise Training and Detraining on Interlukine-6, Interlukine-10 and Apoptosis in Cardiopulmonary System of Type I Diabetic Rats During Endotoxemia
校院名稱 成功大學
系所名稱(中) 物理治療研究所
系所名稱(英) Department of Physical Therapy
學年度 98
學期 2
出版年 99
研究生(中文) 卓佳穎
研究生(英文) Chia-Ying Chuo
學號 t6697108
學位類別 碩士
語文別 英文
論文頁數 59頁
口試委員 指導教授-洪菁霞
中文關鍵字 糖尿病  運動  介白素-6  介白素-10  內毒素血症 
英文關鍵字 diabetes  exercise  detraining  IL-6  IL-10  endotoxemia 
中文摘要 背景與目的:糖尿病患常有感覺異常的情形並容易因感染導致內毒素血症,而第一型糖尿病病患更需要早期的介入來避免相關的併發症出現。另一方面,運動是常用來調節發炎(介白素-6)與抗發炎細胞激素(介白素-10)的一種介入方式,且運動也影響著細胞凋亡的過程和熱休克蛋白的表現。而停止運動訓練之後的成效也許和運動訓練的結果有所不同。因此本實驗想瞭解在streptozotocin誘發的第一型糖尿病鼠,於運動訓練與停止運動訓練後,體內發炎反應的變化和細胞凋亡的狀態。方法:將八週大品種為Wistar的公鼠隨機分為正常與糖尿病兩大組,每大組再分作無運動、運動、與停止運動三小組。運動組接受連續四周的運動訓練,每週五天,每天30到60分鐘,速度為20-25 m/min。停止運動組則於接受運動訓練後再停止運動十天。運動後24小時後以靜脈注射的方式給予脂多醣或生理食鹽水,注射後三小時再進行介白素-6、介白素-10、細胞凋亡蛋白和熱休克蛋白濃度的分析。無運動組在同樣時間點進行而停止運動組在十天後進行相同處理。結果:在糖尿病鼠的體重方面,運動組顯著的比無運動組高(p = 0.041)。在糖尿病鼠的血糖方面,運動組顯著的比無運動組低(p = 0.026)。施打脂多醣的組別,血清中介白素-6與介白素-10的含量顯著高於生理實驗水組。(p <0.001)。運動之正常鼠與無運動之正常鼠在施打脂多醣後,前者介白質-6在血清裡的含量會顯著少於後者(p =0.034)。停止運動訓練組介白素-6的濃度顯著的要比運動與無運動組來的高。然而在糖尿病鼠中,運動僅能少量減低因施打脂多醣所產生的介白素-6。熱休克蛋白72在運動訓練之後顯著的增加,而細胞凋亡蛋白在運動訓練及停止運動訓練之後,沒有顯著的改變。結論:運動可以抑制發炎狀態,然而停止運動訓練卻使得發炎反應增加。臨床應用:本實驗顯示運動可以減少第一型糖尿病因內毒素血症造成的發炎反應,而第一型糖尿病的病人應保持著活動的生活型態。
英文摘要 Background and Purpose: Diabetic patients have impaired sensation and easily result in serious infections which cause endotoxemia. Type 1 diabetic patients require some early interventions to prevent complications. Physical exercise is one kind of interventions that is capable to change the level of inflammatory cytokine (interlukin-6; IL-6) and anti-inflammatory cytokine (interlukin-10; IL-10). Exercise training also influences the apoptotic process and the expression of heat shock protein (HSP). Therefore, the objective of this study was to revel whether streptozotocin(STZ)-induced diabetic rats tend to change endotoxemia-induced inflammation, apoptotic status after exercise training and detraining. Method: Wistar rats (8 wk old) were randomly assigned to normal and diabetic group. Each group was arranged into three subgroups: sedentary, exercised and detraining groups. The rats in the exercised-group ran on a treadmill 5 day/week, 30-60min/day with intensity 20-25 m/min for 4 weeks. The detraining group was detrained for 10 days after 4-week exercise training. Twenty-four hours later, Lipopolysacharide (LPS) or saline were then injected intravenously. At the 3rd hour after LPS injection, we determined IL-6 and IL-10 in serum and lavage; caspase-1, caspase-3 and HSP72 levels in lung and heart. Result: the body weight in STZ-induced diabetic rats with exercise group were significantly higher than STZ-induced diabetic group (p = 0.041). The blood glucose in exercised-diabetic group were significantly lower than diabetic group (p = 0.026). IL-6 and IL-10 levels in serum of LPS group were significantly higher than saline group (p<0.001). After administration of LPS, serum IL-6 level in the normal-exercised group showed a significant decrease compared to the normal-sedentary group (p=0.034). The serum and lavage levels of IL-6 in detraining group were significantly higher than exercise and sedantary groups. However, exercise could slightly decrease serum IL-6 level in the diabetic groups. The expression of HSP72 was significantly increasing after exercise. Caspse-1 and caspase-3 levels didn’t change significantly after exercise training and detraining. Conclusion: The results indicated that exercise training seemed to suppress the inflammatory status. However, the inflammatory status increased in detraining groups. Clinical Relevance: Exercise training may attenuate the inflammatory status during endotoxemia. Our results suggested that type 1 diabetic patient should keep an active life style.
論文目次 Abstract I
摘要 III
致謝 V
Contents VI
Abbreviations VII
Introduction: 1
Methods: 6
Result: 11
Discussion: 14
References: 19
Figures: 25
參考文獻 1. Liese AD, D'Agostino RB, Jr., Hamman RF, et al. The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Youth Study. Pediatrics 2006;118:1510-8.
2. Daneman D. Type 1 diabetes. Lancet 2006;367:847-58.
3. Winter RN, Kramer A, Borkowski A, et al. Loss of caspase-1 and caspase-3 protein expression in human prostate cancer. Cancer Res 2001;61:1227-32.
4. Arya R, Mallik M, Lakhotia SC. Heat shock genes - integrating cell survival and death. J Biosci 2007;32:595-610.
5. Jaattela M, Wissing D, Kokholm K, et al. Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 1998;17:6124-34.
6. Madden LA, Sandstrom ME, Lovell RJ, et al. Inducible heat shock protein 70 and its role in preconditioning and exercise. Amino Acids 2008;34:511-6.
7. Locke M, Noble EG, Atkinson BG. Exercising mammals synthesize stress proteins. Am J Physiol 1990;258:C723-9.
8. Ichinose K, Kawasaki E, Eguchi K. Recent advancement of understanding pathogenesis of type 1 diabetes and potential relevance to diabetic nephropathy. Am J Nephrol 2007;27:554-64.
9. Ishihara K, Hirano T. IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev 2002;13:357-68.
10. Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol 2005;98:1154-62.
11. Riddell MC, Iscoe KE. Physical activity, sport, and pediatric diabetes. Pediatr Diabetes 2006;7:60-70.
12. Neufer PD, Shinebarger MH, Dohm GL. Effect of training and detraining on skeletal muscle glucose transporter (GLUT4) content in rats. Can J Physiol Pharmacol 1992;70:1286-90.
13. Tiengo A, Fadini GP, Avogaro A. The metabolic syndrome, diabetes and lung dysfunction. Diabetes Metab 2008;34:447-54.
14. Pedersen BK. The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control. Essays Biochem 2006;42:105-17.
15. Jesmin S, Zaedi S, Shimojo N, et al. Endothelin antagonism normalizes VEGF signaling and cardiac function in STZ-induced diabetic rat hearts. Am J Physiol Endocrinol Metab 2007;292:E1030-40.
16. Freudenberg MA, Tchaptchet S, Keck S, et al. Lipopolysaccharide sensing an important factor in the innate immune response to Gram-negative bacterial infections: benefits and hazards of LPS hypersensitivity. Immunobiology 2008;213:193-203.
17. Hayes C, Kriska A. Role of physical activity in diabetes management and prevention. J Am Diet Assoc 2008;108:S19-23.
18. Gjovaag TF, Dahl HA. Effect of training and detraining on the expression of heat shock proteins in m. triceps brachii of untrained males and females. Eur J Appl Physiol 2006;98:310-22.
19. Atalay M, Oksala NK, Laaksonen DE, et al. Exercise training modulates heat shock protein response in diabetic rats. J Appl Physiol 2004;97:605-11.
20. Campisi J, Leem TH, Fleshner M. Stress-induced extracellular Hsp72 is a functionally significant danger signal to the immune system. Cell Stress Chaperones 2003;8:272-86.
21. Fincato G, Polentarutti N, Sica A, et al. Expression of a heat-inducible gene of the HSP70 family in human myelomonocytic cells: regulation by bacterial products and cytokines. Blood 1991;77:579-86.
22. Zhang YH, Takahashi K, Jiang GZ, et al. In vivo production of heat shock protein in mouse peritoneal macrophages by administration of lipopolysaccharide. Infect Immun 1994;62:4140-4.
23. Tsan MF, Gao B. Cytokine function of heat shock proteins. Am J Physiol Cell Physiol 2004;286:C739-44.
24. Dekker MJ, Lee S, Hudson R, et al. An exercise intervention without weight loss decreases circulating interleukin-6 in lean and obese men with and without type 2 diabetes mellitus. Metabolism 2007;56:332-8.
25. Goldhammer E, Tanchilevitch A, Maor I, et al. Exercise training modulates cytokines activity in coronary heart disease patients. Int J Cardiol 2005;100:93-9.
26. Thompson D, Markovitch D, Betts JA, et al. Time-course of changes in inflammatory markers during a 6-month exercise intervention in sedentary middle-aged men: A randomized-controlled trial. J Appl Physiol 2009.
27. Semaeva E, Tenstad O, Bletsa A, et al. Isolation of rat trachea interstitial fluid and demonstration of local cytokine production in lipopolysaccharide-induced systemic inflammation. J Appl Physiol 2008;104:809-20.
28. Phaneuf S, Leeuwenburgh C. Apoptosis and exercise. Med Sci Sports Exerc 2001;33:393-6.
29. Primeau AJ, Adhihetty PJ, Hood DA. Apoptosis in heart and skeletal muscle. Can J Appl Physiol 2002;27:349-95.
30. Chae CH, Jung SL, An SH, et al. Treadmill exercise improves cognitive function and facilitates nerve growth factor signaling by activating mitogen-activated protein kinase/extracellular signal-regulated kinase1/2 in the streptozotocin-induced diabetic rat hippocampus. Neuroscience 2009;164:1665-73.
31. Mikami T, Sumida S, Ishibashi Y, et al. Endurance exercise training inhibits activity of plasma GOT and liver caspase-3 of mice [correction of rats] exposed to stress by induction of heat shock protein 70. J Appl Physiol 2004;96:1776-81.
32. Beere HM, Wolf BB, Cain K, et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2000;2:469-75.
33. Li CY, Lee JS, Ko YG, et al. Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J Biol Chem 2000;275:25665-71.
34. Franchi L, Eigenbrod T, Munoz-Planillo R, et al. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 2009;10:241-7.
  • 同意授權校內瀏覽/列印電子全文服務,於2015-08-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-08-13起公開。

  • 如您有疑問,請聯絡圖書館