進階搜尋


下載電子全文  
系統識別號 U0026-2806201815075200
論文名稱(中文) 邊界元素法分析補片修復含孔洞之平板
論文名稱(英文) BOUNDARY ELEMENT ANALYSIS OF A PATCH-REPAIRED PLATE CONTAINING A HOLE
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 106
學期 2
出版年 107
研究生(中文) 吳坤亦
研究生(英文) POOLA MUNIPRASAD
學號 P46057153
學位類別 碩士
語文別 英文
論文頁數 162頁
口試委員 指導教授-夏育群
口試委員-胡潛濱
口試委員-楊文彬
中文關鍵字 none 
英文關鍵字 Anisotropic composites  Patch repair  Interlaminar stresses  Boundary element method. 
學科別分類
中文摘要 none
英文摘要 In engineering industries, the usage of composites made of thin anisotropic layers is being increased rapidly. Most of the convention analysis generally neglects the presence very thin adhesive material due to complicated modeling of thin layers; however, it leads to failure in providing reliable assessment of the potential debonding which usually caused by the fracture of the adhesive layer. This study presents the interlaminar stresses in thin layered anisotropic composites and the patch repair analysis of the composites by the Boundary Element Method (BEM). Thin adhesive layer has also been taken into account for the BEM modeling. the current work applies the already existed self-regularization scheme which was presented by Y.C Shiah to analyze thin anisotropic composites and the stress concentration factor (SCF) has compared for cases of with the presence of the adhesive layer and without the adhesive layer. Few benchmark examples of the patch repair of the plate with a hole containing adhesive layer and without containing of the adhesive layer are analyzed to study the Stress Concentration Factor by the Boundary Element Method approach.
論文目次 ACKNOWLEDGEMENTS I
ABSTRACT II
CONTENTS III
NOMENCLATURE VII
list of tables VIII
List of figures XI
CHAPTER ONE INTRODUCTION 1
1.1 Research background 1
1.2 Motivation 4
1.3 Objective and scope of thesis 5
1.4 Process 7
1.5 stress concentration factor 9
CHAPTER TWO LITERATURE REVIEW 10
2.1 Boundary Integral Equation 10
2.2 Displacement solution: 13
2.3 Stress calculation: 16
CHAPTER three research design and methodology 18
3.1 Analytical solution 21
3.2 Fourier series 22
3.2.1 Green’s function in Fourier series 22
3.2.2 Green’s function first derivative expression in Fourier series 25
3.2.3 Green’s function second derivative expression in Fourier series 27
3.3 simplified Fourier series 30
3.3.1 Green’s function expression in simplified Fourier series 30
3.3.2 The first derivative of Green’s function in simplified Fourier series 32
3.3.3 The second derivative of Green’s function in simplified Fourier series 34
3.4 Self-regularization 37
3.4.1 Finding projection point and judging whether to use self-regularization 38
CHAPTER FOUR RESULTS AND DISCUSSIONS 40
4.1 Verify model 41
4.2 Patch repair of a plate with a circular hole 46
4.2.1 One side patch with and without adhesive layer 48
4.2.1.1 One side patch thin plate-anisotropic 51
4.2.1.2 One side patch thin plate-isotropic 59
4.2.1.3 One side patch thick plate-anisotropic 65
4.2.1.4 One side patch thick plate-isotropic 73
4.2.2 Double side patch with and without adhesive layer 79
4.2.2.1 Double side patch thin plate-anisotropic 82
4.2.2.2 Double side patch thin plate-isotropic 90
4.2.2.3 Double side patch thick plate-anisotropic 95
4.2.2.4 Double side patch thick plate-isotropic 101
4.3 Patch repair of a plate with an Elliptical hole 106
4.3.1 One side patch with and without adhesive layer 108
4.3.1.1 One side patch thin plate-anisotropic 109
4.3.1.2 One side patch thin plate-isotropic 116
4.3.1.3 One side patch thick plate-anisotropic 121
4.3.1.4 One side patch thick plate-isotropic 128
4.3.2 Double side patch with and without adhesive layer 133
4.3.2.1 Double side patch thin plate-anisotropic 134
4.3.2.2 Double side patch thin plate-isotropic 141
4.3.2.3 Double side patch thick plate-anisotropic 146
4.3.2.4 Double side patch thick plate-isotropic 152
CHAPTER FIVE CONCLUSION 157
REFERENCES 159
參考文獻 1. He, M.G.; Tan, C.L. (2013): A self-regularization technique in boundary element method for 3-D stress Analysis. CMES- Computer Modeling in Engineering and Sciences, vol.95, no.4, pp.317-349, 2013.
2. Shiah, Y. C., Tan, C. L., & Chan, L. D. (2015). Boundary Element Analysis of Thin Anisotropic Structures by a Self-regularization Scheme. CMES: Computer Modeling in Engineering & Sciences, 109(1), 15-33.
3. Granados, J.J.; Gallego, R. (2001): Regularization of Nearly Hypersingular Integrals in the Boundary Element Method. Engineering Analysis with Boundary Elements, vol.25, no.3, pp. 165-184.
4. Tomioka, Satoshi; Nishiyama, Shusuke (2010):. Engineering Analysis with Boundary Elements, vol.34, no.4, pp. 393-404.
5. Lacerda, L.A. de; Wrobel, L.C. (2001): Hypersingular Boundary Integral Equation for Axisymmetric Elasticity. Int. J. Numer. Meth. Engng, vol.52, pp. 1337-1354.
6. Shiah, Y.C.; Shi, Yi-Xiao (2006): Heat conduction across thermal barrier coatings of anisotropic substrates. International Communications in Heat and Mass Transfer, vol.33, no.7, pp. 827-835.
7. Shiah, Y.C.; Hematiyan, M.R.; Chen, Y.H. (2013): Regularization of the boundary integrals in the BEM Analysis of 3D potential problems. Journal of Mechanics, vol.29, no.3, pp 385-401.
8. Shiah, Y.C. (2015): 3D Elastostatic boundary element analysis of thin Bodies by Integral Regularizations. (In press) Journal of Mechanics.
9. Cruse, T. A.; Richardson, J. D. (1996): Non-singular Somigliana stress identities in elasticity. International Journal for Numerical Methods in Engineering, vol. 39, no. 19, pp. 3273-3304.
10. Richardson, J. D.; Cruse, T. A. (1999): Weakly singular stress-BEM for 2-D elastostatics. International Journal for Numerical Methods in Engineering, vol.45, pp. 13-35.
11. Shiah, Y.C.; Tan, C.L.; Wang, C.Y. (2012): Efficient computation of the Green’s Function and its derivatives for three-dimensional anisotropic elasticity in BEM analysis. Engineering Analysis with Boundary Elements 36, pp. 1746-1755, 2012.
12. Tan, C. L., Shiah, Y. C., & Wang, C. Y. (2013). Boundary element elastic stress analysis of 3D generally anisotropic solids using fundamental solutions based on Fourier series. International Journal of Solids and Structures, 50(16), 2701-2711.ISO 690
13. Synge, J.L. (1957): The Hypercircle in Mathematical Physics, Cambridge University Press, Cambridge.
14. Barnett, D.M. (1972): The precise evaluation of derivatives of the anisotropic elastic Green’s functions. Phys. Stat. Sol. (b) 49, 741–748.
15. Ting, T.C.T.; Lee,V.G. (1997):The three-dimensional elastostic Green’s function for general anisotropic linear elastic solid. Q. J. Mech. Appl. Math., 50, 407-426.
16. Ting, T.C.T (1996): Anisotropic Elasticity, Oxford University Press, Oxford.
17. Shiah, Y.C.; Tan, C.L.; Lee, V.G.; Chen, Y.H. (2008a): Evaluation of Green’s functions for 3D anisotropic elastic solids. Advances in Boundary Element Techniques IX, Proc. BeTeq 2008 Conf., Seville, R. Abascal & M.H. Aliabadi (eds.),E.C. Ltd. (U.K.), pp. 119-124.
18. Lee,V.G. (2003): Explicit expression of derivatives of elastic Green’s functions for general anisotropic materials. Mech. Res. Comm., 30, 241–249.
19. Shiah, Y.C.; Tan, C.L.; Lee, V.G. (2008b): Evaluation of explicit-form fundamentalsolutions for displacements and stresses in 3D anisotropic elastic solids. CMES:Computer Modeling in Engineering & Sciences, 34, 205-226.
20. Ting T.C.T and Lee V.G., 1997. The Three-Dimensional Elastostatic Green’s Function for General Anisotropic Linear Elastic Solids, Q. JI Mech. Appl. Math., Vol. 50, Pt.3.
21. Shiah, Y.C., Tan, C.L., and Wang, C.Y., 2012. Efficient computation of the Green’s function and its derivatives for three-dimensional anisotropic elasticity in BEM analysis. Eng. Anal. Boundary Elem., 36, 1746-1755.
22. Tan, C. L., Shiah, Y. C., & Wang, C. Y. (2013). Boundary element elastic stress analysis of 3D generally anisotropic solids using fundamental solutions based on Fourier series. International Journal of
solids and Structures, 50(16), 2701-2711.
23. Ting T.C.T and Lee V.G., 1997. The Three-Dimensional Elastostatic’s
Green’s Function for General Anisotropic Linear Elastic Solids, Q. JI
Mech. Appl. Math., Vol. 50, Pt.3.
24. Lee,V.G., “Derivatives of the Three-dimensional Green’s Functions for ----anisotropic Materials’’,International Journal of Solid and Structures,2009.
25. Shiah, Y. C., Tan, C. L., & Lee, R. F. (2010). Internal point solutions for displacements and stresses in 3D anisotropic elastic solids using the boundary element method. Computer Modeling in Engineering and Sciences, 69(2), 167.
26. Heywood, R.B. Designing by photoelasticity. Chapman and Hall, 1952.
27. Peterson, R.E. Stress concentration factors. John Wiley & Sons, 1974.
28. Pilkey, W.D. Peterson’s stress concentration factors. New York: John ----Wiley & Sons Inc., 2nd Edition, 1997.
29. Howland, R.C.J. On the stresses in the neighborhood of circular hole in a strip under tension. Phil. Trans. Roj. Soc.,Voi. 229, 1929, p. 49-86.
30. Lekhnitskii, S.G. Anisotropic plates. Gordon and Breach, 1968
31. Tan, S.C. Finite-width correction factors for anisotropic plate containing a central opening. J. of Composite Materials, Voi. 22, 1988, p. 1080-18.
32. https://accuratus.com/alumox.html
33. https://www.azom.com/article.aspx?ArticleID=9558
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-07-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-07-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw