進階搜尋


下載電子全文  
系統識別號 U0026-2806201708095500
論文名稱(中文) 以稻殼製作孔洞碳-氧化矽材料作為電子封裝之綠色填料的應用與研究
論文名稱(英文) Porous Carbon-Silica Composites Prepared from Rice Husks as Green Fillers for Electronic Packaging Applications
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 105
學期 2
出版年 106
研究生(中文) 謝雅玉
研究生(英文) Ya-Yu Hsieh
學號 L38941141
學位類別 博士
語文別 英文
論文頁數 95頁
口試委員 指導教授-林弘萍
口試委員-侯聖澍
口試委員-黃志嘉
口試委員-蘇進成
口試委員-宋旺洲
中文關鍵字 稻殼  孔洞碳-氧化矽  水熱處理  微波處理  環氧樹脂複合材料  熱機械特性  熱傳導特性 
英文關鍵字 Rice husk  Porous carbon-silica  Hydrothermal treatment  Microwave treatment  Epoxy composite  Mechanical properties  Thermal properties 
學科別分類
中文摘要 在全球環保意識不斷提高,若利用工業或天然廢棄物回收再生材料於產業應用,相較於石化產品具備低碳足跡,除可減少廢棄物對環境造成危害及節省成本或亦提高天然資源維護的附加價值及資源永續的產品特色。因此,本研究論文目的是利用溫和酸水熱前處理和低碳排放煅燒方式等綠色環保製程將稻殼農廢物再生成為生物基碳-氧化矽材料作為封裝常用環氧樹脂高分子之填料。經研磨處理使粒徑微小化,使混摻不同填料含量以達到電子封裝膠材所需的熱機械和導熱特性並應用於封裝體進行模擬測試。研究內容可分成以下三部分:

1.探討稻殼製孔洞碳-氧化矽之離子含量對於環氧樹脂之熱機械和導熱特性影響
本研究將稻殼碳-氧化矽填料於水熱後處理(100°C,24小時)進行三次以達到封裝膠材低離子含量規格需求。與直接煅燒、未離子純化和以酸水熱前處理的稻殼碳-氧化矽同時以離子層析分析、X-射線粉末繞射光譜、氮氣吸附/脫附測量和掃描式電子顯微鏡進行材料之結構和形態等物化特性觀察。由離子層析分析結果得知,經水熱後處理的稻殼碳-氧化矽所含氯離子為4.3 ppm,鈉離子為9.8 ppm和鉀離子為9.0 ppm。X-射線繞射光譜顯示,以將離子純化的稻殼碳-氧化矽,經高溫煅燒後為非晶相型(amorphous phase)結構。不同於未離子純化的稻殼碳-氧化矽,經高溫煅燒後為易誘發人體癌症生成的晶相型(cristobalite crystal phase)結構,對人體不益。熱重量分析結果也說明以酸水熱前處理的稻殼碳-氧化矽,離子含量降低可提高其熱穩定性。由掃描式電子顯微鏡觀察得知此無機填料於有機樹脂均勻分布,相容性佳,此歸因於稻殼碳-氧化矽中氧化矽所提供矽醇基(silanol group)可與環氧樹脂進行氫鍵鍵結(hydrogen bonding)良好的相互作用。以酸水熱稻殼碳-氧化矽添加46 wt.%,可改善環氧樹脂之儲存模數(storage modulus)147%、熱膨脹係數(coefficent of thermal expansion)49%和熱傳導係數(thermal conductivity)142%。
2.探討稻殼製孔洞碳-氧化矽之碳含量對於環氧樹脂之熱機械和導熱特性影響
本研究用簡易方式使稻殼碳-氧化矽材料於空氣條件高溫煅燒後處理不同時間以調控其碳含量。熱重量分析結果,未後煅燒處理的稻殼碳-氧化矽之碳含量為61.7 wt.%,於空氣條件,以650°C煅燒2小時,4小時和8小時之碳含量分別為45 wt.%,31.7 wt.%和0.1 wt.%。稻殼碳-氧化矽的表面積隨著碳含量增加而增加。其外觀皆為不規則形態。因為彼此有良好的相互作用,稻殼碳-氧化矽可於有機樹脂均勻分布。發現環氧樹脂的材料特性會隨填料之碳含量增加,提高儲存模數和熱傳導係數而降低熱膨脹係數。當填充29 wt.%的酸水熱,未後煅燒稻殼碳-氧化矽,使環氧樹脂具有較低硬化溫度(curing temperature)148°C,較低熱膨脹係數42 ppm/°C,較高玻璃轉化溫度(glass transition temperature)123°C,較高儲存模數4059 MPa,較高熱傳導係數0.290 W/mK。

3.探討稻殼製孔洞碳-氧化矽經微波處理對於環氧樹脂之熱機械和導熱特性影響
本研究使用簡易微波後處理(700 W)不同時間以提高水熱後處理的稻殼碳-氧化矽填料之熱穩定性。熱重量分析結果得知,經微波處理的稻殼碳-氧化矽具有較高熱裂解溫度,說明材料之熱穩定性提高。X-射線繞射光譜分析顯示,隨微波處理時間越長,部分SiC生成波峰亦隨著增長。當填充40 wt.%時,可使環氧樹脂之熱傳導係數提高178%,儲存模數可提高149%,玻璃轉化溫度為17.6°C。並且,於封裝體模擬結果得知,以綠色填料的環氧樹脂相較於以氧化矽為填料的商品化封裝膠材在相同填充含量可具有較低的應力(stress)和相同熱傳導性能。簡言之,以稻殼再生成的碳-氧化矽不僅扮演機械性質強化劑還可熱傳導的媒介,確實可為電子封裝之綠色環保且高性能的填料應用。
英文摘要 Going “green” is noticeably becoming a major consideration for the manufacturing of electronic devices to preserve our natural resources in the world and to achieve a sustainability generation in future. For this reason, we have developed an interest in the three main objectives for this research thesis are as follows:

Part I: Ionic Content Effect of Rice Husks-derived Porous Carbon–Silica on the Mechanical and Thermal Properties of Epoxy Composites

In this study firstly focused on the preparation and characterization of a low ionic content of the agricultural waste rice husks-derived porous carbon-silica by using a simple post-hydrothermal processe after pre-acid-hydrothermal through and pyrolysis under nitrogen condition for electronic packaging demand. The ionic content of [Cl-], [Na+], and [K+] of the BRH sample respectively were 4.3, 9.8, and 9.0 ppm after further post-hydrothermal process. XRD diagram shows that the structure of the calcined BRH material is in amorphous form, which is non-toxic to humans. As green filler, the uniformly dispersed BRH filler in the epoxy matrix through hydrogen bonding of the silanol group of silica. An improvement of 147% in storage modulus, 49% in CTE and 142% in thermal conductivity of the epoxy/preBRH composites at 46 wt.% filler content, compared with neat epoxy.

Part II: Carbon Content Effect of Rice Husks-derived Porous Carbon–Silica on the Mechanical and Thermal Properties of Epoxy Composites

In this study, bio-based porous carbon-controllable carbon-silica composite was easily prepared by using post-prolysis treatment under air condition. As green filler, the uniformly dispersed BRH filler well interact with the epoxy matrix which resulting in the thermal conductivity and thermal-mechanical properties of the epoxy/preBRH composites improved as increasing carbon content. At 29 wt.% of filler content, the epoxy composites exhibit lower curing temperature (148°C), lower CTE (42 ppm/°C), higher Tg (123°C), higher storage modulus (4059 MPa), and higher effective thermal conductivity (0.290 W/mK).

Part III: Microwave Treatment Effect of Rice Husks-derived Porous Carbon-Silica on the Mechanical and Thermal Properties of Epoxy Composites

This study focused on the effect of microwave treatment of the postBRH filler and its function in epoxy matrix for electronic packaging applications. XRD result indicated that partial SiC formation after microwave treatment. As green filler, an improvement of 178% in thermal conductivity, 149% in storage modulus and 17.6°C in Tg of the microwave treated-postBRH/epoxy composites at 40 wt.% of filler content, compared with neat epoxy. By modeling, the microwave treated-postBRH/epoxy composites at the same filler content have better stress reduction and thermal performance than commercial silica filled underfill also have verified. In brief, the rice husks-derived carbon-silica, can serve not only as reinforcing agent but also as thermal transport medium used in epoxy composite, is a green and high-performance filler for this purpose.
論文目次 CONTENTS
ABSTRACT…………………………….……………………..………………………..I
ACKNOWLEDGEMENT……………………………………………………………V
CONTENTS…………..…………………………………………………………….VII
LIST OF TABLES…………..………...….………………………………………….IX
LIST OF FIGURES…………..……….…………………………………………..…XI

Chapter 1 Introduction………………………………………………………………..1
1.1 Background…………………………………………………………………….…...1
1.1.1 Electronic packaging and its materials …………………………………….....2
1.1.2 Epoxy underfill and its composition ……………………………………..…...4
1.1.3 Demanded properties ……………………………………………………..…11
1.2 Introduction of biocomposites...……………………………………………….…..15
1.2.1 Rice husks and its applications………………………..……………….…....19
1.2.2 RHA preparation ………………………………………………………….....22
1.2.3 RHA characteristics ………………………………………………..………..24
1.3 Thesis objectives ………………………………………………………………….30
Chapter 2 Experimental Section…………………………………………………….32
2.1 Materials………………………………………………………………………..….32
2.1.1 Epoxy resin……………………………………………..……………….…..32
2.1.2 Hardener and Its catalyst……………………………………………..….…..33
2.1.3 RHA……………………………………………………………………...….33
2.2 Filler preparation…………………………………………………………………..34
2.2.1 Porous carbon-silica particles derived from rice husks……………………..34
2.2.2 Different ionic content of carbon-silica particles preparation………..……..34
2.2.3 Carbon-controllable porous carbon-silica particles preparation……....…….35
2.2.4 Microwave treatment of carbon-silica particles……………………..……...36
2.3 Epoxy composite preparation 37
2.3.1 Preparation of the carbon-silica/epoxy composites…………………………37
2.4 Characterization……………………………………………………….…………..39
2.4.1 Thermogravimetric analyzer (TGA)………………………………………...39
2.4.2 Nitrogen adsorption-desorption isotherms……………………………...…...39
2.4.3 Field emission scanning electron microscope (FE-SEM)……………...……39
2.4.4 Laser scattering particle size analyzer …………………..…………………..40
2.4.5 X-ray powder diffraction (XRD) ………………………………………..…..40
2.4.6 Ion Chromatography (IC) ………………………………………………..….40
2.4.7 Differential scanning calorimetry (DSC) ………………………………...….40
2.4.8 Thermo-mechanical analyzer (TMA) …………………………………….....41
2.4.9 Dynamic mechanical analyzer (DMA)………………………………..…….41
2.4.10 Thermal conductivity analyzer……………………………………..……...41
2.4.11 Volume resistivity measurement……………………………………..……42
2.4.12 Finite element analysis (FEA)………………………………………..……42
Chapter 3 Results and Discussions……………………………………………….....43
3.1 Ionic conten effect of rice husks-derived porous carbon-silica on the mechanical and thermal properties of epoxy composites…...………………………..………..…...43
3.1.1 Filler characterization…………………………………..…………………...43
3.1.2 Epoxy composite characterization………………………………..…………50
3.2 Carbon content effect of rice husks-derived porous carbon-silica on the mechanical and thermal properties of epoxy composites………………………….……...…....58
3.2.1 Filler characterization.....................................................................................58
3.2.2 Epoxy composite characterization…………………………………………..62
3.3 Microwave treatment effect on rice husks-derived porous carbon-silica on the mechanical and thermal properties of epoxy composites…………….……..…….72
3.3.1 Filler characterization …………………………………………………….....72
3.3.2 Epoxy composite characterization …………………………….………….....75
3.3.3 Thermal and thermal-mechanical modeling of the rice husks-derived carbon-silica/epoxy composite as green underfill in flip-chip package…………...81
Chapter 4 Conclusions and Reconmmendations…………………………………...86
Reference…………………………………………………………………………...…88
參考文獻 [1] Wikipedia encyclopedia, https://zh.wikipedia.org/zh-tw/RoHS accessed 17 April, 2017.
[2] Anastas P.T.,Warner, J.C., Green Chemistry: Theory and Practice, Oxford University Press: New York, 1998, 30.
[3] Tummala, R.R., Rymaszewski, E.J., Klopfenstein, A.G., Microelectronics Packaging Handbook, Part II, Second ed. Norwell: Kluwer Academic Publishers, 1997.
[4] Lau, J.H., Chip on Board Technologies for Multichip Modulues. New York: Van Nostrand Reinhold, 1994.
[5] Liang, Q., Moon, K.S., Zhang, Y., Wong, C.P., IEEE 58th Electronic Components and Technology Conference (ECTC), 2008, 1958-1962.
[6] Sun, Y., Wong, C.P., IEEE Electronic Components and Technology Conference, 2004, 1, 477-83.
[7] Zhang, Z., Wong, C.P., IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2004, 27(3), 515-24.
[8] Stevens, J.J., Epoxy Resin Technology. New York: Interscience, 1968.
[9] Cycloaliphatic Epoxide Systems. Report Issued by Union Carbide Chemicals & Plastics Technology Corporation, 1989
[10] Physical Properties Guide for Epoxy Resins and Related Products. Technical Report Issued by EPON TM Resolution Performance Products, 2001.
[11] Ellis, B. Chemistry and Technology of Epoxy Resins, Glasgow: Blackie Academic & Professional, an imprint of Chapman & Hall, 1993.
[12] Licari, J.J., Swanson, D.W., Adhesives technology for electronic applications: materials, processes, reliability. 2nd ed. New York: William Andrew, Inc; 2011.
[13] Tess, R.W., Poehlein, G.W. Applied Polymer Science, 1985, 285-934.
[14] Sun, Y. Wong, C.P., Electronic Components and Technology Conference, 2006, 1905-1910.
[15] Li, H., Jacob, K.I. Wong, C.P., IEEE Trans. Adv. Packag., 2003, 26, 25-32.
[16] Lee, W., Han, S.I., Yu, Y.J., Kim, S.J., Byun, K.Y., Thermochim. Acta,. 2007, 455, 148-155.
[17] Lin, Z., Mcnamara, A., Liu, Y., Moon, K.S., Wong, C.P., Compos. Sci. Technol., 2014, 90, 123-128.
[18] Wong, C.P., Bollampally, R. S., Journal of Applied Polymer, 1999, 74, 3396-3403.
[19] Gilleo, K., Colterman, B., Chen, T., High Density Interconnect, 2000, June, 28-31.
[20] Yaeger, E., Carson, G., Chip Scale Review, 2001, March, 26-28.
[21] Yao, Y., Zeng, X., Wang, F.F., Sun, R., Xu, J.B., Wong, C.P., Chem. Mater., 2016, 28, 1049-1057.
[22] Lu, S., Chun, W., Yu, J., Yang, X., J. Appl. Polym. Sci., 2008, 109, 2095-2102.
[23] Minning, C., Thermal Management, Ch. 5, (J. J. Licari, ed.), McGraw-Hill, 1995.
[24] Hashim, A.A. Smart Nanoparticles Technology, 1st ed. Intech, 2012.
[25] Thermal Characteristics, MIL-STD-883, Method 1012.1, 1980, Nov.
[26] Steady State Heat Flux Measurement and Thermal Transmission Properties by Measure of Heat Flow Meter Apparatus, ASTM C518, Am. Soc. Testing and Materials.
[27] Verdingovas, V., Jellesen, M.S., Ambat, R., IEEE T Device Mat Re., 2014, 14, 42-51.
[28] Pickering, K., Properties and performance of natural-fibre composites, 2008, 3-114.
[29] Turmanova, S., Genieva, S., Vlaev, L., Int. J. Chem., 2012, 4, 62-89.
[30] Satapathy, A., Jha, A.K., Mantry, S., Singh, S.K., J. Reinf. Plast. Compos., 2010, 29, 2869-2878.
[31] Beg, M.D.H., Pickering, K.L., Compos. Pt. A-Appl. Sci. Manuf., 2008, 39, 1091-1100.
[32] Obasi, H.C., Iheaturu, N.C., Onuoha, F.N., Chike-Onyegbula, C.O., Akanbi, M.N., Ezeh, V.O., Am. J. Eng. Res., 2014, 3, 117-123.
[33] Shimazaki, Y., Miyazaki, Y., Takezawa, Y., Nogi, M., Abe, K., Ifuku, S., Yano, H., Biomacromolecules, 2007, 8, 2976-2978.
[34] Rowell, R. M., Natural fibres: types and properties, Cha 1. (Pickering, K.L. ed.), Woodhead publishing limited, 2008, 1-64.
[35] Paramasivam, T., Abdulkalam, P.J., Fiber Science and Technology, 1974, 85-98.
[36] Weyenberg, V., Truong, T.C., Vangrimde, B., Verpoest, I., Composites Part A, 2006, 1368-1376.
[37] Anizah, K., Sahari, B.B., Khalid, Y.A., Wong, S.V., Composite Structures, 2005, 34-44.
[38] Rong, M.Z., Ming, Q.Z., Yuan, L., Gui, C.Y., Han, M.Z., Composites Science and Technology, 2001, 1437-1447.
[39] Pode, R., Renew. Sust. Energ. Rev., 2016, 53, 1468.
[40] Battegazzore, D., Bocchini, S., Alongia, J., Frachea, A., RSC Adv., 2014, 97, 54703-54712.
[41] Chen, S.Y., Chou, P.F., Chan, W.K., Lin, H.M., Ceram. Int., 2017, 43, 2239-2245.
[42] Ghosh, R., Bhattacherjee, S., J. Chem. Eng. Process Technol., 2013, 4: 1000156.
[43] Torad, N.L., Salunkhe, R.R., Li, Y.Q., Hamoudi, H, Imura, M., Sakka, Y., Hu, C.C., Yamauchi, Y., Chem-Eur J., 2014, 20, 7895-7900.
[44] Salunkhe, R.R., Kamachi, Y., Torad, N.L., Hwang, S.M., Sun, Z., Dou, S.X., Kim, J.H., Yamauchi, Y., J. Mater. Chem. A., 2014, 2, 19848-19854.
[45] Tang, J., Liu, J., Torad, N.L., Kimura, T., Yamauchi, Y., Nano Today, 2014, 9, 305-323.
[46] Onche, E.O., Ugheoke, B.I., Lawal, S.A., Dickson, U.M., Leonardo Electron. J. Pract. Technol., 2007, 6, 81-90.
[47] Shen, Y., Zhao, P., Shao, Q., Microporous Mesoporous Mater., 2014, 188, 46-76.
[48] Chaudhary, D.S., Jollands, M.C., Cser, F., Adv. Polym. Tech., 2004, 23, 147-155.
[49] Daffalla, S.B., Mukhtar, H., Shaharun, M.S., International Journal of Chemical and Environmental Engineering, 2012, 3, 192-200.
[50] Suwanprateeb, J., Hatthapanit, K., J. Appl. Polym. Sci., 2002, 86: 3013-3020.
[51] Chen, K.T., Wang, J.X., Dai, Y.M., Wang, P.H., Liou, C.Y., Nien, C.W., Wu, J.S., Chen, C.C., J. Taiwan Inst. Chem. E., 2013, 44, 622-629.
[52] Umeda, J., Kondoh, K., Industrial Crops and Products, 2010, 32, 539-544.
[53] Chakraverty, A., Mishra, P., Banerjee, H.D., J. Mater. Sci., 1988, 23, 21-24.
[54] Chandrasekhar, S., Pramada, P.N., Praveen, L., J. Mater. Sci., 2005, 40, 6535-6544.
[55] Rohatgi, K., Prasd, S.V., Rohatgi, P.K., J. Mater. Sci. Lett., 1987, 6, 829-831.
[56] Rahman, M.R., Islam, M.N., Huque, M.M., Hamdan, S., Ahmed, A.S., BioResources, 2010, 5, 854-869.
[57] Shu, C.H., Hsu, H.J., J. Taiwan Inst. Chem. E., 2011, 42, 387-393.
[58] Ugheoke, I.B., Mamat, O., Maejo Int. J. Sci. Technol., 2012, 6, 430-448.
[59] Singh, D., Kumar, R., Kumar, A., Rai, K.N., Ceramica, 2008, 54, 203-212.
[60] Chow, T.S., Journal of Materials Science, 1980, 15 (8), 1873-1888.
[61] Nakamura, Y.Y., Okubo, M.M., Matsumoto, T., Journal of Applied Polymer Science, 1992, 45, 1281-1289.
[62] Nakamura, Y.Y., Okubo, M.M., Matsumoto, T., Journal of Applied Polymer Science, 1992, 44, 151-158.
[63] Gan, D.L., Song, S., Wang, Z.C., European Polymer Journal, 2001, 37 (7), 1359-1365.
[64] Zurina, M.I., Bakar, A.A. H., Journal of Applied Polymer Science, 2003, 92 (5), 3320-3332.
[65] Zhang, L.W., Wang, Y.S., Yu, D.S.Y., Journal of Applied Polymer Science, 2000, 78, 1873-1878.
[66] Chaudhary, D.S., Jollands, M.C., Cser, F., Silicon Chemistry, 2003, 1, 281-289.
[67] Hamdan, H., Muhid, M.N.M., Endud, S., Listiorini, E., Ramli, Z., J. Non-Cryst. Solids, 1997, 211, 126-131.
[68] He, J.R., Kuo, W.C., Su, C.S., Lin, H.P., J. Chin. Chem. Soc., 2014, 61, 836-840.
[69] Rohaeti, E., Husein, H.I., Materials Science and Technology, 2016, 265-272.
[70] WHO. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 1993, 58, 41.
[71] Luo, J.L., Seghi, R.J., Journal of Adhesion Science and Technology, 2000, 15(3), 267-277.
[72] Liang, J.Z., Li., R.K.Y., Polymer International, 2000, 49, 170-174.
[73] Vrancken, K.C., Coster, L.D., Voort, P.V.D., Grobet, P.J., Vansant, E.F., Journal of Colloid and Interface Science, 1995, 170, 71-77.
[74] Zhao, X. S., Lu, G.Q., Whitetaker, A. ., Millar, G.J., Zhu, H.Y., Journal of Physical Chemistry B, 1997, 101, 6525-6531.
[75] Derouet, D.S., Jean-Claude, F., Joel, B., Jean-Yves, E.B., Journal of Polymer Science Part A: Polymer Chemistry, 2003, 36 (3), 437-453.
[76] Genieva, S.D., Turmanova, S.Ch., Dimitrova, A.S., Vlaev, L.T., J. Thermal Anal. Calorim., 2008, 93, 387-396.
[77] Marciniec, B.K., Domka, L.A., Colloids and Polymer Science, 1983, 261 (4), 306-311.
[78] Irgen, L.A.C., Eltekov, Y.A.E.A., Mechanics of Composite Materials, 1973, 9 (2), 220-224.
[79] Verbeek, C.J.R., materials Letters, 2002, 57 (13-14), 1919-1924.
[80] Dow, J.H.S., Shenoy, A.V.M.D., Ceramic Powder Science 11A, 1988, 1, 380-388.
[81] de Souza, M.F., Batista, P.S., Regiani, I., Liborio, J.B., de Souza, D.P.F., Materials Research, 2000, 3 (2), 25-30.
[82] Wei, L., Hu, N., Zhang, Y., Materials, 2010, 3, 4066-4079.
[83] Fu, F.X., He, Z.X., Mo, D.C., Lu, S.S., Appl.Therm. Eng., 2014, 66, 493-498.
[84] “Integrated Circuits Thermal Test Method Environment Conditions,” EIA/JEDEC JESD51-2, December, 1995.
[85] Rahman, I.A., Ismail, J., Osman, H., J. Mater. Chem., 1997, 7, 1505-1509.
[86] Jonsson, L.J., Martin, C., Bioresour Technol., 2016, 199, 103-112.
[87] Kalapathy, U., Proctor, A., Shultz, J., Bioresour. Technol., 2000, 73, 257-262.
[88] Tong, J.Y., Royan, N.R.R., Ng, Y.C., Ghani, M.H.A., Ahmad, S., Adv. Mater. Sci. Eng., 2014, 938961.
[89] Suzuki, N., Kiba, S., Yamauchi, Y., J. Mater. Chem., 2011, 21, 14941-14847.
[90] Hoffmann, F., Cornelius, M., Morell, J., Fröba, M., Angewandte Chemie International Edition., 2006, 45, 3216-3251
[91] Run, M.T., Wu, S.Z., Zhang, D.Y., Wu, G., Materials Chemistry and Physics, 2007, 105, 341-347.
[92] Hsieh, Y.Y., Chen, T.Y., Kuo, W.C., Lai, Y.S., Yang, P.F., Lin, H.P., J. Appl. Polym. Sci., 2017, 134, 44699.
[93] Hsieh, Y.Y., Tsai, Y.C., Lin, H.P., Hsu, C.H., J. Chin. Chem. Soc., 2017, DOI: 10.1002/jccs.201600827.
[94] Tang, L.C., Wan, Y.J., Yan, D., Pei, Y.B., Zhao, L., Li, Y.B., Wu, L.B., Jiang, J.X., Lai, G.Q., Carbon, 2013, 60, 16-27.
[95] Gong, L.X., Zhao, L., Tang, L.C., Liu, H.Y., Mai, Y.W., Compos Sci Technol., 2015, 121, 104-114.
[96] Zhang, L.Y., Wang, Y.Y., Peng, B., Yu, W.T., Wang, H.Y., Wang, T., Deng, B.W., Chai, L.Y., Zhang, K., Wang, J.X., Green Chem., 2014, 16, 3926.
[97] Wong, C.P., Bollampally, R.S., J. Appl. Polym. Sci., 1999, 74, 3396-3403.
[98] Qiu, S.L., Wang, C.S., Wang, Y.T., Liu, C.G., Chen, X.Y., Xie, H.F., Huang, Y.A., Cheng, R.S., Express Polym. Lett., 2011, 5, 809-818.
[99] Sheng, X., Akinc, M., Kessler, M.R., Polym. Eng. Sci., 2010, 50, 1075-1084.
[100] Wu, J., Chung, D.D.L., Carbon, 2004, 42, 3039-3042.
[101] Bogdal, D., Penczek, P., Pielichowski, J., Prociak, A., M, Adv. Polym. Sci., 2003, 163, 193-263.
[102] Mirzaei, A., Neri, G., Sens. Actuator B-Chem., 2016, 237, 749-775.
[103] Hashimoto, S., Ohashi, S., Hirao, K., Zhou, Y., Hyuga, H., Honda, S., Iwamoto, Y., J. Ceram. Soc. Jpn., 2011, 119, 740–744.
[104] Tony, V.C.S., Voon, C.H., Lee, C.C., Lim, B.Y., Arshad, M.K.M., Gopinath, S.C.B., Foo, K.L., Ruslinda, A.R., Hashim, U., Nashaain, M.N., Ceram. Int., 2016, 42, 17642-17649.
[105] Menéndez, J.A., Arenillas, A., Fidalgo, B., Fernández, Y., Zubizarreta, L., Calvo, E.G., Bermúdez, J.M., Fuel Process. Technol., 2010, 91, 1-8.
[106] Meredith, R., Engineers' Handbook of Industrial Microwave Heating. The Institution of Electrical Engineers, London, UK, 1998.
[107] Satapathy, L.N., Ramesh, P.D., Agrawal,D., Roy, R., Mater. Res. Bull., 2005, 40, 1871-1882.
[108] Thue, P.S., Reis, G.S., Lima, E.C., Sieliechi, J.M., Dotto, G.L., Wamba, A.G.N., Dias, S.L.P., Pavan, F.A., Res Chem Intermed, 2017, 43, 1063-1087.
[109] Moshtaghioun, B.M., Poyato, R., Cumbrera, F.L., Bernardi-Martin, S.D., Monshi, A., Abbasi, M.H., J. Eur. Ceram. Soc., 2012, 32, 1787-1794.
[110] Ghafoorian, N.S., Bahramian, A.R., Seraji, M.M., Materials and Design, 2015, 86, 279-288.
[111] Li, J., Shirai, T., Fuji, M., Advanced Powder Technology, 2013, 24, 838-843.
[112] Chung, S.L., Lin, J.S., Molecules, 2016, 21, 670.
[113] Karol, P., Tomasz, S.W., J. power technologies, 2015, 95, 14-24.
[114] Zhang, X., Wang, Y., Im, J.H., Ho, P.S., IEEE Trans. Device Mater. Reliab., 2012, 12, 462-469.
[115] Lee, M.W., Kim, J.Y., J.D., Lee, C.H., IEEE 60th Electronic Components and Technology Conference (ECTC), 2010, 1623-1630.
[116] Lau, J.H., IEEE Trans-EPM, 2002, 25 (1), 51-58.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-06-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-06-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw