進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2806201621392500
論文名稱(中文) 支援向量迴歸於專案管理完工估計之應用-以半導體產業為例
論文名稱(英文) Applying SVR for Estimating EAC in project management- A case study in semiconductor industries
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系碩士在職專班
系所名稱(英) Department of Industrial and Information Management (on the job class)
學年度 104
學期 2
出版年 105
研究生(中文) 羅傑仁
研究生(英文) Chieh-Jen Lo
電子信箱 roger_mavis@hotmail.com
學號 R37031079
學位類別 碩士
語文別 中文
論文頁數 66頁
口試委員 指導教授-王泰裕
口試委員-陳梁軒
口試委員-林君維
口試委員-盧浩鈞
中文關鍵字 支援向量迴歸  預估完工時間  專案管理  晶圓代工管理 
英文關鍵字 support vector regression  estimate at complete  project management  wafer foundry 
學科別分類
中文摘要 近年來,中國大陸全力扶植半導體產業,紅色供應鏈的崛起,讓台灣企業面臨越來越多的挑戰,併購案及使用國家資金做為後盾可看出中國大陸進入半導體市場的決心。相較於台灣,只有靠企業間的合併及提昇產業競爭力來加以對抗,再加上台灣電子業面臨產品低價化和產品生命週期縮短的趨勢,要如何因應產業的變遷及趨勢,將成為重要的課題。
半導體晶圓代工廠由於產品預估的出貨時間和實際出貨的時間常常有落差,往往造成後段封裝測試及客戶送樣時程安排的困擾,因此希望透過探討來選擇一個較佳的預估專案完工時間的方法,來縮短產品生產交期。本研究使用支援向量迴歸來找出最佳預測專案完工時間的方法,經由實際資料模擬與分析來證明所預期的目標,預測專案完工的時間來降低專案完工的總成本,來提昇客戶滿意度。
從研究結果顯示支援向量迴歸在預測模型上比多元迴歸分析有良好的預測結果,所以本研究建立一個支援向量迴歸預測半導體專案完工時間之方法,經由預估專案完工的時間來預估產品上市時間點,進而縮短從產品設計到產品出貨的生產交期。
英文摘要 Estimating the actual time from the beginning to the delivery of foundry service has been one of the most challenging problems. Until now no reliable ways have been found to close the gap between projected time and the actual delivery one. In fact, any delay in chip manufacturing schedule is cost prohibitive and the subsequent stages of packaging / testing would also be disrupted as well. In this research, we will present an analytical approach to predict the product release schedule. This study applies the support vector regression to predict the estimated time of project completion. Specifically, we have implement a predictive model on the product release time by using the support vector regression machine on the actual production data. The results has demonstrated that the support vector regression achieves better accuracy than linear multiple regression method. We strongly believe that our method can improve the visibility and accuracy of project schedule management that leads to valuable cost savings and satisfaction of customers.
論文目次 摘要 i
英文摘要 ii
誌 謝 i
目 錄 ii
表目錄 iv
圖目錄 v
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 2
第三節 研究目的 3
第四節 研究範圍 4
第五節 研究假設 4
第六節 研究流程 4
第七節 論文架構 5
第二章 文獻探討 6
第一節 半導體產業 6
第二節 晶圓代工管理 8
第三節 專案管理 10
第四節 預估完工總成本 13
第五節 支援向量機在預測上的應用 15
第六節 小結 20
第三章 支援向量迴歸預估完工時間 21
第一節 問題描述 21
第二節 訂定EAC的關鍵因子 23
第三節 支援向量機預測模型 25
第四節 多元迴歸模型預測 28
第五節 評估與比較 29
第六節 小節 32
第四章 個案資料分析 33
第一節 個案資料介紹 33
第二節 建立模型 35
第三節 支援向量迴歸預測 40
第四節 多元迴歸分析 43
第五節 預測結果比較 52
第五章 結論與建議 54
第一節 研究結論 54
第二節 研究建議 55
參考文獻 56
附錄 60
參考文獻 經濟部工業局,2011,我國半導體產業結構圖,http://www.moeaidb.gov.tw/external/ctlr?PRO=news.NewsView&id=10941,搜尋日期: 2015年10月1日
http://www.csie.ntu.edu.tw/~cjlin/libsvm/,搜尋日期: 2016年2月10日
蕭慧德. (2009). 演化式支援向量機於企業危機診斷之研究. 成功大學工業與資訊管理學系學位論文, 1-113.
陳寬裕, 何嘉惠, & 蕭宏誠. (2004). 應用支援向量迴歸於國際旅遊需求之預測.
Kao, A., Hung, J. C., & Huang, C. P. 支援向量迴歸建立血壓預測模型改善血壓量測的不準確性.
Ascencion, Z. C., Miguel, A., & Ridao, E. F. C. (2008). Using a risk-based approach to project scheduling. A case illustration from semiconductor manufacturing, European Journal of Operations Research, 190, 708-723.
Azaron, A., Perkgoz, C., & Sakawa, M. (2005). A genetic algorithm approach for the time-cost trade-off in PERT networks. Applied Mathematics and Computation, 168(2), 1317-1339.
Keerthi, S. S., & Lin, C. J. (2003). Asymptotic behaviors of support vector machines with Gaussian kernel. Neural computation, 15(7), 1667-1689.
Chen, T., & Wang, Y. C. (2009). A nonlinear scheduling rule incorporating fuzzy-neural remaining cycle time estimator for scheduling a semiconductor manufacturing factory—a simulation study. The International Journal of Advanced Manufacturing Technology, 45(1-2), 110-121.
Cleland, D. I., & King, W. R. (1975). Systems Analysis and Project Management. McGraw-Hill.
Cheng, M. Y., Hoang, N. D., Roy, A. F., & Wu, Y. W. (2012). A novel time-depended evolutionary fuzzy SVM inference model for estimating construction project at completion. Engineering Applications of Artificial Intelligence, 25(4), 744-752.
Cheng, M. Y., Peng, H. S., Wu, Y. W., & Chen, T. L. (2010). Estimate at completion for construction projects using evolutionary support vector machine inference model. Automation in Construction, 19(5), 619-629.
Christensen, D. S. (1994). Using performance indices to evaluate the estimate at completion. The Journal of Cost Analysis, 11(1), 17-23.
Christensen, D. S., Antolini, R. C., & McKinney, J. W. (1992). A review of estimate at completion research. In Cost estimating and analysis (pp. 207-224). Springer New York.
Christensen, D. S. (1993). Determining an accurate estimate at completion. National Contract Management Journal, 25(1), 17-25.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning,20(3), 273-297.
Cherkassky, V., & Ma, Y. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural networks, 17(1), 113-126.
Cao, L., & Tay, F. E. (2001). Financial forecasting using support vector machines. Neural Computing & Applications, 10(2), 184-192.
Domaschke, J., Brown, S., Robinson, J., & Leibl, F. (1998, December). Effective implementation of cycle time reduction strategies for semiconductor back-end manufacturing. In Proceedings of the 30th conference on Winter simulation (pp. 985-992). IEEE Computer Society Press.
Duan, K., Keerthi, S. S., & Poo, A. N. (2003). Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing, 51, 41-59.
Gupta, A. K., & Sivakumar, A. I. (2006). Job shop scheduling techniques in semiconductor manufacturing. The International Journal of Advanced Manufacturing Technology, 27(11-12), 1163-1169.
Gunn, S. R. (1998). Support vector machines for classification and regression. ISIS Technical Report, 14.
Goodwin, P. (2002). Integrating management judgment and statistical methods to improve short-term forecasts. Omega, 30(2), 127-135.
Kumar, P. R. (1994). Scheduling semiconductor manufacturing plants. Control Systems, IEEE, 14(6), 33-40.
Lu, S. C., Ramaswamy, D., & Kumar, P. R. (1994). Efficient scheduling policies to reduce mean and variance of cycle-time in semiconductor manufacturing plants. Semiconductor Manufacturing, IEEE Transactions on,7(3), 374-388.
Lipke, W., Zwikael, O., Henderson, K., & Anbari, F. (2009). Prediction of project outcome: The application of statistical methods to earned value management and earned schedule performance indexes. International Journal of Project Management, 27(4), 400-407.
Lin, C. F., & Wang, S. D. (2002). Fuzzy support vector machines. Neural Networks, IEEE Transactions on, 13(2), 464-471.
Lu, C. J., Lee, T. S., & Chiu, C. C. (2009). Financial time series forecasting using independent component analysis and support vector regression. Decision Support Systems, 47(2), 115-125.
Magott, J., & Skudlarski, K. (1993). Estimating the mean completion time of PERT networks with exponentially distributed durations of activities. European Journal of Operational Research, 71(1), 70-79.
Muller, K. R., Smola, A. J., Ratsch, G., Scholkopf, B., Kohlmorgen, J., & Vapnik, V. (1999). Using support vector machines for time series prediction. Advances in kernel methods—support vector learning, MIT Press, Cambridge, MA, 243-254.
Pinker, E., Szmerekovsky, J., & Tilson, V. (2014). On the complexity of project scheduling to minimize exposed time. European Journal of Operational Research, 237(2), 448-453.
Sivakumar, A. I. (1999, December). Optimization of a cycle time and utilization in semiconductor test manufacturing using simulation based, on-line, near-real-time scheduling system. In Proceedings of the 31st conference on Winter simulation: Simulation---a bridge to the future-Volume 1 (pp. 727-735). ACM.
Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199-222.
Smola, A., & Vapnik, V. (1997). Support vector regression machines. Advances in Neural Information Processing Systems, 9, 155-161.
Yang, J., & Chang, T. S. (1998). Multi-objective scheduling for IC sort and test with a simulation test bed. Semiconductor Manufacturing, IEEE Transactions on, 11(2), 304-315.
Vapnik, V., Golowich, S. E., & Smola, A. (1996). Support vector method for function approximation, regression estimation, and signal processing. In Advances in Neural Information Processing Systems 9.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-06-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-06-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw