進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2806201600434200
論文名稱(中文) Alpha節律神經回饋訓練在記憶上之探討及其空間時間之分析
論文名稱(英文) Neurofeedback of alpha rhythm on memory and its spatiotemporal analysis
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 薛人瑞
研究生(英文) Jen-Jui Hsueh
學號 P88991042
學位類別 博士
語文別 英文
論文頁數 135頁
口試委員 共同指導教授-蕭富仁
指導教授-陳家進
口試委員-張復瑜
口試委員-林宙晴
口試委員-林發暄
中文關鍵字 神經回饋訓練  alpha節律  情節式記憶  工作記憶  源定位重建  腦波空間分布  額頂葉皮質區  楔前葉  後扣帶皮質  腦顳中回 
英文關鍵字 Neurofeedback  alpha rhythm  working memory  episodic memory  dipole source reconstruction  spatial distribution  frontoparietal cortex  precuneus  posterior cingulate cortex  middle temporal gyrus 
學科別分類
中文摘要 記憶在人類日常生活中,扮演很重要的角色,是一項相當重要的功能,因此如何有效地增進記憶能力,無疑是項極具吸引力且值得被深究的議題。而有關記憶能力增進之訓練,alpha節律神經回饋訓練在近幾十年來已廣泛地被探討與應用,但是在記憶表現影響效果上以及alpha節律是否能夠有效地被訓練出來,目前還是存在很多爭議。位於大腦額頂葉區域的alpha節律不僅跟智力、記憶力有關係,同時也跟病理上的狀態也有相關。因此本研究主要探討alpha節律神經回饋訓練對工作記憶與情節式記憶表現上之影響效果以及其空間時間上之分析。訓練期間為四個禮拜,每個禮拜三天,共十二天。工作記憶的評估主要是使用反向數字廣度及運算廣度作業,而情節式記憶的評估則是使用字彙配對以及圖形再認作業。焦慮、憂鬱、失眠以及認知功能的評估則是使用四個問卷來評估病理上的狀態。全腦腦電波圖記錄也在訓練完後實施。空間時間分析則是使用腦空間分布圖及源定位。實驗結果顯示,alpha組經過神經回饋訓練後顯著地提升額頂葉區域的alpha能量及成功次數,而控制組則沒有此現象。Alpha組同時在工作記憶及情節式記憶表現上均有顯著地改善。兩組的四個問卷分數在訓練前後均在正常範圍。透過腦波空間位分布顯示,額頂葉區域的alpha節律則與記憶表現呈現顯著性的正相關。源定位顯示,絕大部分的偶極分布在楔前葉、後扣帶皮質以及腦顳中回。本研究提供並支持透過少量的訓練次數(相較於目前臨床訓練次數)便可達到顯著地訓練效果之證據。此效果不僅在工作記憶表現增進上可觀察到,同時也在情節式記憶上也觀察到。Alpha節律的來源區域也跟記憶相關腦區有重疊。
英文摘要 Memory is very important for human beings. It involves in our daily lives. Without it, we cannot survive and promote human civilization. Therefore, how to find a way to improve memory performance becomes a critical issue. In recent decades, several kinds of trainings on memory are reported. One of them is neurofeedback. Neurofeedback training (NFT) of the alpha rhythm has been used for several decades but is still controversial in regards to its trainability and effects on working and episodic memory. Alpha rhythms of the frontoparietal region are associated with either the intelligence or memory of healthy subjects and are also related to pathological states. In this study, we explored NFT of alpha rhythm effects on working and episodic memory performances and its spatiotemporal analysis. Three NFT sessions per week were conducted for 4 weeks. Working memory was assessed by both a backward digital span task and an operation span task, and episodic memory was assessed using word pair task and picture recognition task. Four questionnaires were used to assess anxiety, depression, insomnia, and cognitive function. Whole-head EEG was recorded after alpha NFT. Spatiotemporal analysis was conducted by spatial distribution and dipole source reconstruction. The Ctrl group had no change in alpha amplitude and duration. In contrast, the Alpha group showed a progressive significant increase in the alpha amplitude and total alpha duration of the frontoparietal region. Accuracies of both working and episodic memories were significantly improved in a large proportion of participants of the Alpha group, particularly for those with remarkable alpha-amplitude increases. Scores of four questionnaires fell in a normal range before and after NFT. Alpha spatial distribution showed positive correlation with memory performance. The dipoles locations of the frontoparietal alpha were mostly clustered in precuneus, posterior cingulate cortex and middle temporal gyrus. The current study provides supporting evidence for alpha trainability within a small session number compared to that of therapy. Our findings suggest the enhancement of working and episodic memory through alpha NFT. The regions of alpha enhancement may associate with memory-related brain regions.
論文目次 中文摘要 I
Abstract III
致謝 V
Contents VI
List of Tables IX
List of Figures X
List of Abbreviations XII
Chapter 1 Introduction 1
1.1 Memory 1
1.2 Neurofeedback 4
1.3 Alpha rhythm 6
1.4 Alpha NFT on memory 7
1.5 Motivation and purpose 11
Chapter 2 Experiment I 12
2.1 Material and methods 12
2.1.1 Participants 12
2.1.2 Neurofeedback training and processing 13
2.1.3 EEG mapping 16
2.1.4 Memory tasks 17
2.1.5 Questionnaires 20
2.1.6 Experimental procedure 21
2.1.7 Statistical analysis 23
2.2 Results 24
2.2.1 EEG data 25
2.2.2 EEG mapping 30
2.2.3 Memory performance 32
2.2.4 Questionnaires 36
2.3 Discussion 38
2.4 Summary 49
Chapter 3 Experiment II 50
3.1 Material and methods 50
3.1.1 Participants 50
3.1.2 Neurofeedback training and processing 51
3.1.3 Whole-head EEG recording and processing 51
3.1.5 Episodic memory task 52
3.1.6 Questionnaires 54
3.1.7 Experimental procedure 54
3.1.8 Statistical analysis 56
3.2 Results 57
3.2.1 Episodic memory performance 57
3.2.2 Questionnaires 59
3.2.4 Topographic distribution of alpha rhythm 63
3.2.5 Correlation between memory performance and topographic distribution 66
3.3 Discussion 69
3.4 Summary 76
Chapter 4 Experiment III 77
4.1 Material and methods 80
4.1.1 Participants 80
4.1.2 Whole-head EEG and processing 81
4.1.3 Independent component analysis (ICA) source reconstruction 83
4.1.4 Statistical analysis 84
4.2 Results 85
4.2.1 ERSP averaged 85
4.2.2 Max peak averaged 90
4.2.3 Positive averaged 94
4.2.4 Negative averaged 98
4.2.5 Inter-channel ICA-filtered signal correlations 102
4.2.6 Agreement 103
4.2.7Alpha spatial distribution 110
4.3 Discussion 112
4.4 Summary 116
Chapter 5 Conclusions and future works 117
5.1 Conclusions 117
5.2 Future works 118
References 119
參考文獻 [1] Aftanas, L.I., Golocheikine, S.A., 2001. Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neurosci. Lett. 310, 57-60.
[2] Andrian, E., 1934. The Berger rhythm: potential changes from the occipital lobes in man. Brain 57, 355-384.
[3] Angelakis, E., Stathopoulou, S., Frymiare, J.L., Green, D.L., Lubar, J.F., Kounios, J., 2007. EEG neurofeedback: a brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly. Clin. Neuropsychol. 21, 110-129.
[4] Anokhin, A., Vogel, F., 1996. EEG alpha rhythm frequency and intelligence in normal adults. Intelligence 23, 1-14.
[5] Atkinson, R.C., Shiffrin, R.M., 1968. Human memory: A proposed system and its control processes.
[6] Backhaus, J., Junghanns, K., Broocks, A., Riemann, D., Hohagen, F., 2002. Test–retest reliability and validity of the Pittsburgh Sleep Quality Index in primary insomnia. J. Psychosom. Res. 53, 737-740.
[7] Bauer, R.H., 1976. Short-term memory: EEG alpha correlates and the effect of increased alpha. Behav. Biol. 17, 425-433.
[8] Becerra, J., Fernandez, T., Roca-Stappung, M., Diaz-Comas, L., Galán, L., Bosch, J., Espino, M., Moreno, A.J., Harmony, T., 2012. Neurofeedback in healthy elderly human subjects with electroencephalographic risk for cognitive disorder. J. Alzheimers Dis. 28, 357-367.
[9] Beck, A.T., Steer, R.A., Brown, G.K. 1996. Manual for the BDI-II: San Antonio, TX: Psychological Corporation.
[10] Boynton, T., 2001. Applied research using alpha/theta training for enhancing creativity and well-being. J. Neurother. 5, 5-18.
[11] Breteler, M.H.M., Arns, M., Peters, S., Giepmans, I., Verhoeven, L., 2010. Improvements in spelling after QEEG-based neurofeedback in dyslexia: A randomized controlled treatment study. Appl. Psychophys. Biof. 35, 5-11.
[12] Tulving, E., Craik, F.I.M., 2000. The Oxford handbook of memory, doi: http://dx.doi.org/10.1093/brain/125.2.439.
[13] Cervena, K., Espa, F., Perogamvros, L., Perrig, S., Merica, H., Ibanez, V., 2014. Spectral analysis of the sleep onset period in primary insomnia. Clin. Neurophysiol. 125, 979-987.
[14] Chapman, R.M., Shelburne, S.A., Bragdon, H.R., 1970. EEG alpha activity influenced by visual input and not by eye position. Electroen. Clin. Neuro. 28, 183-189.
[15] Chen, X., Bin, G., Daly, I., Gao, X., 2013. Event-related desynchronization (ERD) in the alpha band during a hand mental rotation task. Neurosci. Lett. 541, 238-242.
[16] Cho, M.K., Jang, H.S., Jeong, S.H., Jang, I.S., Choi, B.J., Lee, M.T., 2008. Alpha neurofeedback improves the maintaining ability of alpha activity. Neuroreport 19, 315-317.
[17] Convit, A., De Asis, J., De Leon, M.J., Tarshish, C.Y., De Santi, S., Rusinek, H., 2000. Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer’s disease. Neurobiol. Aging 21, 19-26.
[18] Cooper, N.R., Croft, R.J., Dominey, S.J.J., Burgess, A.P., Gruzelier, J.H., 2003. Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. Int. J. Psychophysiol. 47, 65-74.
[19] Cortoos, A., De Valck, E., Arns, M., Breteler, M.H.M., Cluydts, R., 2010. An exploratory study on the effects of tele-neurofeedback and tele-biofeedback on objective and subjective sleep in patients with primary insomnia. Appl. Psychophys. Biof. 35, 125-134.
[20] Dekker, M.K.J., Sitskoorn, M.M., Denissen, A.J.M., van Boxtel, G.J.M., 2014. The time-course of alpha neurofeedback training effects in healthy participants. Biol. Psychol. 95, 70-73.
[21] Dempster, T., Vernon, D., 2009. Identifying indices of learning for alpha neurofeedback training. Appl. Psychophysi. Biof. 34, 309-318.
[22] Doppelmayr, M., Klimesch, W., Hödlmoser, K., Sauseng, P., Gruber, W., 2005. Intelligence related upper alpha desynchronization in a semantic memory task. Brain Res. Bull. 66, 171-177.
[23] Doppelmayr, M., Klimesch, W., Stadler, W., Pöllhuber, D., Heine, C., 2002. EEG alpha power and intelligence. Intelligence 30, 289-302.
[24] Egner, T., Gruzelier, J.H., 2001. Learned self-regulation of EEG frequency components affects attention and event-related brain potentials in humans. Neuroreport 12, 4155-4159.
[25] Egner, T., Gruzelier, J.H., 2003. Ecological validity of neurofeedback: modulation of slow wave EEG enhances musical performance. Neuroreport 14, 1221-1224.
[26] Egner, T., Zech, T.F., Gruzelier, J.H., 2004. The effects of neurofeedback training on the spectral topography of the electroencephalogram. Clin. Neurophysiol. 115, 2452-2460.
[27] Elger, C.E., Grunwald, T., Lehnertz, K., Kutas, M., Helmstaedter, C., Brockhaus, A., Van Roost, D., Heinze, H.J., 1997. Human temporal lobe potentials in verbal learning and memory processes. Neuropsychologia 35, 657-667.
[28] Enriquez-Geppert, S., Huster, R.J., Scharfenort, R., Mokom, Z.N., Zimmermann, J., Herrmann, C.S., 2014. Modulation of frontal-midline theta by neurofeedback. Biol. Psychol. 95, 59-69.
[29] Escolano, C., Aguilar, M., Minguez, J. 2011. EEG-based upper alpha neurofeedback training improves working memory performance. Paper presented at the 33rd Ann. Int. Conf. Proc. IEEE Eng. Med. Biol. Soc. Boston, Massachusetts USA, 2327-2330.
[30] Escolano, C., Navarro-Gil, M., Garcia-Campayo, J., Minguez, J., 2014. The effects of a single session of upper alpha neurofeedback for cognitive enhancement: a sham-controlled study. Appl. Psychophys. Biof. 39, 227-236.
[31] Feshchenko, V.A., Reinsel, R.A., Veselis, R.A., 2001. Multiplicity of the α Rhythm in Normal Humans. J. Clin. Neurophysiol. 18, 331-344.
[32] Folstein, M.F., Folstein, S.E., McHugh, P.R., 1975. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J. Psychiat. Res. 12, 189-198.
[33] Fuchs, M., Kastner, J., Wagner, M., Hawes, S., Ebersole, J.S., 2002. A standardized boundary element method volume conductor model. Clin. Neurophysiol. 113, 702-712.
[34] Fydrich, T., Dowdall, D., Chambless, D.L., 1992. Reliability and validity of the Beck Anxiety Inventory. J. Anxiety Disord. 6, 55-61.
[35] Gardini, S., Cornoldi, C., De Beni, R., Venneri, A., 2006. Left mediotemporal structures mediate the retrieval of episodic autobiographical mental images. Neuroimage 30, 645-655.
[36] Gazzaniga, M.S., 1991. Interview with endel tulving. J. Cognitive Neurosci. 3, 89-94.
[37] Gilboa, A., Winocur, G., Grady, C.L., Hevenor, S.J., Moscovitch, M., 2004. Remembering our past: functional neuroanatomy of recollection of recent and very remote personal events. Cereb. Cortex 14, 1214-1225.
[38] Goldman, R.I., Stern, J.M., Engel Jr, J., Cohen, M.S., 2002. Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 13, 2487-2492.
[39] Gruzelier, J.H., 2014. EEG-neurofeedback for optimising performance. I: a review of cognitive and affective outcome in healthy participants. Neurosci. Biobehav. R. 44, 124-141.
[40] Guez, J., Rogel, A., Getter, N., Keha, E., Cohen, T., Amor, T., Gordon, S., Meiran, N., Todder, D., 2015. Influence of electroencephalography neurofeedback training on episodic memory: a randomized, sham-controlled, double-blind study. Memory 23, 683-694.
[41] Hammond, D.C., 2000. Neurofeedback treatment of depression with the Roshi. J. Neurother. 4, 45-56.
[42] Hammond, D.C., 2005. Neurofeedback treatment of depression and anxiety. J. Adult Dev. 12, 131-137.
[43] Hanslmayr, S., Sauseng, P., Doppelmayr, M., Schabus, M., Klimesch, W., 2005. Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Appl. Psychophys. Biof. 30, 1-10.
[44] Hardt, J.V., Kamiya, J., 1978. Anxiety change through electroencephalographic alpha feedback seen only in high anxiety subjects. Science 201, 79-81.
[45] Heller, W., Nitschke, J.B., Etienne, M.A., Miller, G.A., 1997. Patterns of regional brain activity differentiate types of anxiety. J. Abnorm. Psychol. 106, 376-385.
[46] Holtmann, M., Steiner, S., Hohmann, S., Poustka, L., Banaschewski, T., Boelte, S., 2011. Neurofeedback in autism spectrum disorders. Dev. Med. Child Neurol. 53, 986-993.
[47] Hsueh, J.J., Chen, T.S., Chen, J.J., Shaw, F.Z., 2016a. Neurofeedback training of EEG alpha rhythm enhances episodic and working memory. Hum. Brain Mapp. 37, doi: 10.1002/hbm.23201.
[48] Hsueh, J.J., Chen, J.J., Shaw, F.Z., 2016b. Scalp EEG leads reflect distinct somatic discrimination using laser evoked potentials. J. Med. Biol. Eng. (in press)
[49] Huizenga, H.M., De Munck, J.C., Waldorp, L.J., Grasman, R.P.P.P., 2002. Spatiotemporal EEG/MEG source analysis based on a parametric noise covariance model. IEEE T. Bio-Med. Eng. 49, 533-539.
[50] Jaimchariyatam, N., Rodriguez, C.L., Budur, K., 2011. Prevalence and correlates of alpha-delta sleep in major depressive disorders. Innov. Clin. Neurosci. 8, 35-49.
[51] Jensen, A.R., Figueroa, R.A., 1975. Forward and backward digit span interaction with race and IQ: Predictions from Jensen's theory. J. Educ. Psychol. 67, 882-893.
[52] Jensen, O., Gelfand, J., Kounios, J., Lisman, J.E., 2002. Oscillations in the alpha band (9-12 Hz) increase with memory load during retention in a short-term memory task. Cereb. Cortex 12, 877-882.
[53] Jutten, C., Herault, J., 1991. Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal Process. 24, 1-10.
[54] Kayıran, S., Dursun, E., Dursun, N., Ermutlu, N., Karamürsel, S., 2010. Neurofeedback intervention in fibromyalgia syndrome; a randomized, controlled, rater blind clinical trial. App. Psychophys. Biof. 35, 293-302.
[55] Keizer, A.W., Verment, R.S., Hommel, B., 2010. Enhancing cognitive control through neurofeedback: A role of gamma-band activity in managing episodic retrieval. Neuroimage 49, 3404-3413.
[56] Klimesch, W., 1999. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29, 169-195.
[57] Klimesch, W., Doppelmayr, M., Hanslmayr, S., 2006a. Upper alpha ERD and absolute power: their meaning for memory performance. Prog. Brain Res. 159, 151-165.
[58] Klimesch, W., Hanslmayr, S., Sauseng, P., Gruber, W., Brozinsky, C.J., Kroll, N.E.A., Yonelinas, A.P., Doppelmayr, M., 2006b. Oscillatory EEG correlates of episodic trace decay. Cereb. Cortex 16, 280-290.
[59] Klimesch, W., Sauseng, P., Gerloff, C., 2003. Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. Eur. J. Neurosci. 17, 1129-1133.
[60] Klimesch, W., Sauseng, P., Hanslmayr, S., 2007. EEG alpha oscillations: the inhibition–timing hypothesis. Brain Res. Rev. 53, 63-88.
[61] Kotchoubey, B., Strehl, U., Uhlmann, C., Holzapfel, S., König, M., Fröscher, W., Blankenhorn, V., Birbaumer, N., 2001. Modification of slow cortical potentials in patients with refractory epilepsy: a controlled outcome study. Epilepsia 42, 406-416.
[62] Landis, J.R., Koch, G.G., 1977. The measurement of observer agreement for categorical data. Biometrics 33, 159-174.
[63] Laufs, H., Kleinschmidt, A., Beyerle, A., Eger, E., Salek-Haddadi, A., Preibisch, C., Krakow, K., 2003. EEG-correlated fMRI of human alpha activity. Neuroimage 19, 1463-1476.
[64] Lecomte, G., Juhel, J., 2011. The effects of neurofeedback training on memory performance in elderly subjects. Psychology 2, 846-852.
[65] Li, Y., Hu, Y., Liu, T., Wu, D., 2011. Dipole source analysis of auditory P300 response in depressive and anxiety disorders. Cog. Neurodynamics 5, 221-229.
[66] Linkenkaer-Hansen, K., Nikulin, V.V., Palva, S., Ilmoniemi, R.J., Palva, J.M., 2004. Prestimulus oscillations enhance psychophysical performance in humans. J. Neurosci. 24, 10186-10190.
[67] Liotti, M., Woldorff, M.G., Perez, R., Mayberg, H.S., 2000. An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia 38, 701-711.
[68] Melton, A.W., 1963. Implications of short-term memory for a general theory of memory. J. Verb. Learn. Verb. Be. 2, 1-21.
[69] Miller, G.A., 1956. The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81-97.
[70] Monastra, V.J., Lynn, S., Linden, M., Lubar, J.F., Gruzelier, J.H., LaVaque, T.J., 2005. Electroencephalographic biofeedback in the treatment of attention-deficit/hyperactivity disorder. Appl. Psychophys. Biof. 30, 95-114.
[71] Moosmann, M., Ritter, P., Krastel, I., Brink, A., Thees, S., Blankenburg, F., Taskin, B., Obrig, H., Villringer, A., 2003. Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage 20, 145-158.
[72] Nan, W., Rodrigues, J.P., Ma, J., Qu, X., Wan, F., Mak, P.I., Mak, P.U., Vai, M.I, Rosa, A., 2012. Individual alpha neurofeedback training effect on short term memory. Int. J. Psychophysiol. 86, 83-87.
[73] Neuper, C., Wörtz, M., Pfurtscheller, G., 2006. ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog. Brain Res. 159, 211-222.
[74] Niedermeyer, E., 1990. Alpha-like rhythmical activity of the temporal lobe. Clin. Electroencephal. 21, 210-224.
[75] Nissen, M.J., Bullemer, P., 1987. Attentional requirements of learning: Evidence from performance measures. Cognitive Psychol. 19, 1-32.
[76] Nunez, P.L., Wingeier, B.M., Silberstein, R.B., 2001. Spatial‐temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks. Hum. Brain Mapp. 13, 125-164.
[77] Ogura, Y., Sekihara, K., 1993. Relationship between dipole parameter estimation errors and measurement conditions in magnetoencephalography. IEEE T. Bio-Med. Eng. 40, 919-924.
[78] Palva, S., Palva, J.M., 2007. New vistas for α-frequency band oscillations. Trends Neurosci. 30, 150-158.
[79] Peniston, E.G., Kulkosky, P.J., 1991. Alpha-theta brainwave neurofeedback for Vietnam veterans with combat-related post-traumatic stress disorder. Med. Psychother. 4, 47-60.
[80] Platel, H., Baron, J.C., Desgranges, B., Bernard, F., Eustache, F., 2003. Semantic and episodic memory of music are subserved by distinct neural networks. Neuroimage 20, 244-256.
[81] Plihal, W., Born, J., 1997. Effects of early and late nocturnal sleep on declarative and procedural memory. J. Cognitive Neurosci. 9, 534-547.
[82] Ranganath, C., Johnson, M.K., D’Esposito, M., 2000. Left anterior prefrontal activation increases with demands to recall specific perceptual information. J. Neurosci. 20, 1-5.
[83] Rice, K.M., Blanchard, E.B., Purcell, M., 1993. Biofeedback treatments of generalized anxiety disorder: preliminary results. Biofeedback Self-Reg. 18, 93-105.
[84] Rodin, E.A., Rodin, M.J., 1995. Dipole sources of the human alpha rhythm. Brain Topogr. 7, 201-208.
[85] Rombouts, S.A.R.B., Barkhof, F., Goekoop, R., Stam, C.J., Scheltens, P., 2005. Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study. Hum. Brain Mapp. 26, 231-239.
[86] Ros, T., Munneke, M.A.M., Parkinson, L.A., Gruzelier, J.H., 2014. Neurofeedback facilitation of implicit motor learning. Biol. Psychol. 95, 54-58.
[87] Sadato, N., Nakamura, S., Oohashi, T., Nishina, E., Fuwamoto, Y., Waki, A., Yonekura, Y., 1998. Neural networks for generation and suppression of alpha rhythm: a PET study. Neuroreport 9, 893-897.
[88] Salenius, S., Kajola, M., Thompson, W.L., Kosslyn, S., Hari, R., 1995. Reactivity of magnetic parieto-occipital alpha rhythm during visual imagery. Electroen. Clin. Neuro. 95, 453-462.
[89] Sauseng, P., Klimesch, W., Doppelmayr, M., Pecherstorfer, T., Freunberger, R., Hanslmayr, S., 2005a. EEG alpha synchronization and functional coupling during top‐down processing in a working memory task. Hum. Brain Mapp. 26, 148-155.
[90] Sauseng, P., Klimesch, W., Schabus, M., Doppelmayr, M., 2005b. Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. Int. J. Psychophysiol. 57, 97-103.
[91] Saxby, E., Peniston, E.G., 1995. Alpha‐theta brainwave neurofeedback training: An effective treatment for male and female alcoholics with depressive symptoms. J. Clin. Psychol. 51, 685-693.
[92] Schachter, D.L., 1987. Implicit memory: History and current status. J. Exp. Psychol. Learn. 13, 501-518.
[93] Sekihara, K., Abraham-Fuchs, K., Stefan, H., Hellstrandt, E., 1996. Suppression of background brain activity influence in localizing epileptic spike sources from biomagnetic measurements. Brain Topogr. 8, 323-328.
[94] Sekihara, K., Takeuchi, F., Kuriki, S., Koizumi, H., 1994. Reduction of brain noise influence in evoked neuromagnetic source localization using noise spatial correlation. Phys. Med. Biol. 39, 937-946.
[95] Sestieri, C., Corbetta, M., Romani, G.L., Shulman, G.L., 2011. Episodic memory retrieval, parietal cortex, and the default mode network: functional and topographic analyses. J. Neurosci. 31, 4407-4420.
[96] Shaw, F.Z., Lai, C.J., Chiu, T.H., 2002. A low-noise flexible integrated system for recording and analysis of multiple electrical signals during sleep–wake states in rats. J. Neurosci. Meth. 118, 77-87.
[97] Staufenbiel, S.M., Brouwer, A.M., Keizer, A.W., Van Wouwe, N.C., 2014. Effect of beta and gamma neurofeedback on memory and intelligence in the elderly. Biol. Psychol. 95, 74-85.
[98] Sterman, M.B., Egner, T., 2006. Foundation and practice of neurofeedback for the treatment of epilepsy. Appl. Psychophy. Biof. 31, 21-35.
[99] Sterman, M.B., Howe, R.C., Macdonald, L.R., 1970. Facilitation of spindle-burst sleep by conditioning of electroencephalographic activity while awake. Science 167, 1146-1148.
[100] Storm van Leeuwen, W., Bickford, R., Brazier, M., Cobb, W.A., Dondey, M., Gastaut, H., Gloor, P., Henry, C.E., Hess, R. , Knott, J.P., Kugler, J., Lairy, G.C., Loeb, C., Magnus, O., Oller Daurella, L., Petsche, H., Schwab, R., Walter, W.G., Widén, L., 1967. Proposal for an EEG terminology by the terminology committee of the International Federation for Electroencephalography and Clinical Neurophysiology. Am. J. EEG Technol. 7, 41-48.
[101] Tarkka, I.M., Treede, R.D., 1993. Equivalent electrical source analysis of pain-related somatosensory evoked potentials elicited by a CO2 laser. J. Clin. Neurophysiol. 10, 513-519.
[102] Teder-Sälejärvi, W.A., McDonald, J.J., Di Russo, F., Hillyard, S.A., 2002. An analysis of audio-visual crossmodal integration by means of event-related potential (ERP) recordings. Cognitive Brain Res. 14, 106-114.
[103] Thut, G., Nietzel, A., Brandt, S.A., Pascual-Leone, A., 2006. α-Band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J. Neurosci. 26, 9494-9502.
[104] Tiihonen, J., Kajola, M., Hari, R., 1989. Magnetic mu rhythm in man. Neuroscience 32, 793-800.
[105] Tulving, E., Donaldson, W. 1972. Organization of memory, in: Tulving, E. (Eds.), Episodic and semantic memory. Academic press Inc. New York, pp. 381-402.
[106] Tulving, E., 2002. Episodic memory: from mind to brain. Annu. Rev. Psychol. 53, 1-25.
[107] Turner, M.L., Engle, R.W., 1989. Is working memory capacity task dependent? J. Mem. Lang. 28, 127-154.
[108] Valentini, E., Hu, L., Chakrabarti, B., Hu, Y., Aglioti, S.M., Iannetti, G.D., 2012. The primary somatosensory cortex largely contributes to the early part of the cortical response elicited by nociceptive stimuli. Neuroimage 59, 1571-1581.
[109] Valeriani, M., Rambaud, L., Mauguire, F., 1996. Scalp topography and dipolar source modelling of potentials evoked by CO2 laser stimulation of the hand. Electroen. Clin. Neuro. 100, 343-353.
[110] van Boxtel, G.J., Gruzelier, J.H., 2014. Neurofeedback: introduction to the special issue. Biol. Psychol. 95, 1-3.
[111] Vernon, D., Egner, T., Cooper, N., Compton, T., Neilands, C., Sheri, A., Gruzelier, J.H., 2003. The effect of training distinct neurofeedback protocols on aspects of cognitive performance. Int. J. Psychophysiol. 47, 75-85.
[112] Vogel, H., Port, J.D., Lenz, F.A., Solaiyappan, M., Krauss, G., Treede, R.D., 2003. Dipole source analysis of laser-evoked subdural potentials recorded from parasylvian cortex in humans. J. Neurophysiol. 89, 3051-3060.
[113] Von Stein, A., Chiang, C., König, P., 2000. Top-down processing mediated by interareal synchronization. P. Natl. Acad. Sci. USA 97, 14748-14753.
[114] Wagner, A.D., Shannon, B.J., Kahn, I., Buckner, R.L., 2005. Parietal lobe contributions to episodic memory retrieval. Trends Cog. Sci. 9, 445-453.
[115] Wang, J.R., Hsieh, S.L., 2013. Neurofeedback training improves attention and working memory performance. Clin. Neurophysiol. 124, 2406-2420.
[116] Wang, Q.S., Zhou, J.N., 2002. Retrieval and encoding of episodic memory in normal aging and patients with mild cognitive impairment. Brain Res. 924, 113-115.
[117] Wangler, S., Gevensleben, H., Albrecht, B., Studer, P., Rothenberger, A., Moll, G.H., Heinrich, H., 2011. Neurofeedback in children with ADHD: specific event-related potential findings of a randomized controlled trial. Clin. Neurophysiol. 122, 942-950.
[118] Witte, M., Kober, S.E., Ninaus, M., Neuper, C., Wood, G., 2013. Control beliefs can predict the ability to up-regulate sensorimotor rhythm during neurofeedback training. Front. Hum. Neurosci. 7, 1-8.
[119] Yamazaki, T., Kamijo, K.I., Kenmochi, A., Fukuzumi, S.I., Kiyuna, T., Takaki, Y., Kuroiwa, Y., 2000. Multiple equivalent current dipole source localization of visual event-related potentials during oddball paradigm with motor response. Brain Topogr. 12, 159-175.
[120] Zhu, D.C., Majumdar, S., Korolev, I.O., Berger, K.L., Bozoki, A.C., 2013. Alzheimer’s disease and amnestic mild cognitive impairment weaken connections within the default-mode network: a multi-modal imaging study. J Alzheimer's Dis. 34, 969-984.
[121] Zoefel, B., Huster, R.J., Herrmann, C.S., 2011. Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. Neuroimage 54, 1427-1431.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-06-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-06-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw