系統識別號 U0026-2806201315510200
論文名稱(中文) 固相合成摻雜過渡金屬之CuInSe2 及其性能研究
論文名稱(英文) Solid-state synthesis and characterisation of transition-metal-doped CuInSe2
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 蔡博全
研究生(英文) Po-Chuan Tsai
學號 N56991251
學位類別 碩士
語文別 中文
論文頁數 85頁
口試委員 指導教授-齊孝定
中文關鍵字 CuInSe2  過渡金屬  脈衝雷射沉積 
英文關鍵字 CuInSe2  Transition metals  Pulsed laser deposition 
中文摘要 本實驗用純元素粉末做為前驅物,籍由固相合成法製作CuInSe2與CuIn0.9M0.1Se2 (M=Transition metal)之靶材,再將靶材利用脈衝雷射沉積法(PLD)成長薄膜。最後使用X光繞射(XRD)、X光能量譜(EDS)、掃描電子顯微術(SEM)、Hall 效應以及吸收光譜等分析方法,探討靶材及薄膜之結晶結構、組成成份、表面形貌以及光電性質,並比較摻雜前後其性質上之差異與改變。
XRD分析結果顯示CuInSe2於500°C燒結6小時後即可得到所要之單一純相,而CuIn0.9M0.1Se2則須在較高的溫度(600°C或700°C)燒結6小時,才能獲得所要之純相。EDS分析結果顯示合成之靶材成分非常接近化學劑量比,但Cu/In比稍少於1,由此推測應屬N型半導體,Hall效應分析證實了此結果。利用所製作之靶材,我們籍由PLD在室溫成功成長出CuInSe2與CuIn0.9M0.1Se2 之薄膜。測量結果顯示CuIn0.9M0.1Se2薄膜之晶粒明顯比CuInSe2薄膜之晶粒小,僅有若干奈米。雖然之前分析顯示靶材中Cu/In比稍少於1,但所成長之薄膜中的Cu/In比都略大於1,為P型半導體。吸收光譜分析顯示,摻雜過渡金屬之CuIn0.9M0.1Se2薄膜,其能隙值均大於未摻雜之CuInSe2薄膜。
英文摘要 In this study, bulk samples of CuInSe2 and CuIn0.9M0.1Se2 (M=transition metal) were synthesized from the Cu, In, Se and M powders by the solid state reaction method. The sintered pellets were used as the targets for the pulsed laser deposition (PLD) of thin films. The composition, structure, surface morphology, and optoelectronic properties of the targets and grown films were studied by a range of techniques, including X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), Hall effect, optical absorption spectroscopy, etc. The modification of the properties due to the M doping was investigated.

XRD analysis showed that a pure phase of CuInSe2 could be formed by sintering at 500 C for 6 hours, while CuIn0.9M0.1Se2 had to be sintered at some higher temperatures (i.e. at 600 or 700 C for 6 hours). EDS results showed that the compositions of the sintered samples were very close to the stoichiometry, except that the Cu/In ratio was slightly less than 1, suggesting that they should belong to the N type semiconductor. This was later confirmed by the Hall effect measurement. Using the sintered pellets as the targets, we successfully grew the CuInSe2 and CuIn0.9M0.1Se2 films at room temperature by the PLD technique. Characterization showed that the grain sizes of the CuIn0.9M0.1Se2 films, which were in the order of a few nanometers, were much smaller than that of the CuInSe2 film. Although the targets’ compositions were Cu/In < 1, the Cu/In ratio of all the grown films was measured to be slightly large than 1, indicating that they were P type semiconductors, which was indeed confirmed by the Hall effect. The band gaps of the grown films were measured from the optical absorption spectra, which showed that all the doped CuIn0.9M0.1Se2 films had a larger gap than the un-doped CuInSe2 film.
論文目次 摘要 I
Abstract II
誌謝 IV
總目錄 V
表目錄 VIII
圖目錄 X
第一章 緒論 1
1-1前言 1
1-2研究動機及目的 4
第二章 文獻回顧 7
2-1 CuInSe2之特性 7
2-2 CuInSe2之摻雜 11
2-2-1 CuIn1-xGaxSe2薄膜 11
2-2-2 CuIn1-xAlxSe2薄膜 11
2-3 中間能帶 14
2-4脈衝雷射沉積法 16
第三章 實驗方法與分析儀器 19
3-1實驗方法與步驟 19
3-1-1 CuIn1-XMXSe2靶材製作 19
3-1-2 脈衝雷射沉積CuInSe2與CuIn0.9M0.1Se2薄膜 21
3-1-3 CuInSe2與CuIn0.9M0.1Se2薄膜的退火處理 23
3-2使用藥品 24
3-3使用儀器與分析設備 25
3-4 儀器基本原理 27
3-4-1 X-ray diffraction 27
3-4-2表面形貌觀察及成份分析 28
3-4-3 霍爾量測 29
第四章 實驗結果與討論 31
4-1 CuInSe2靶材製作 31
4-2 CuInSe2靶材摻雜鋁 34
4-3 CuIn1-XMXSe2靶材的製作 37
4-3-1 燒結溫度對CuIn0.9M0.1Se2靶材結晶結構之影響 37
4-3-2 燒結溫度對CuIn0.9M0.1Se2靶材成份之影響 43
4-3-3 雜相之消除 45
4-3-4 摻雜對晶粒大小的影響 48
4-3-5摻雜對晶格常數的影響 50
4-3-6 CuInSe2靶材與CuIn0.9M0.1Se2靶材的低溫電阻量測 52
4-3-7 CuInSe2靶材與 CuIn0.9M0.1Se2靶材的霍爾量測 55
4-4 CuInSe2靶材與CuIn0.9M0.1Se2靶材進行PLD鍍膜研究 58
4-4-1 CuInSe2薄膜與CuIn0.9M0.1Se2薄膜的結晶相鑑定 59
4-4-2 CuInSe2薄膜與CuIn0.9M0.1Se2薄膜的顯微形貌分析 60
4-4-3 CuInSe2薄膜與CuIn0.9M0.1Se2薄膜的成份分析 62
4-4-4 CuInSe2薄膜與CuIn0.9M0.1Se2薄膜的穿透度與能隙分析 64
4-4-5 CuInSe2薄膜與CuIn0.9M0.1Se2薄膜的霍爾分析 66
4-5 CuInSe2薄膜與CuIn0.9M0.1Se2薄膜退火之研究 69
4-5-1退火溫度對CuInSe2薄膜與CuIn0.9M0.1Se2薄膜結晶結構之影響 69
4-5-2退火溫度對CuInSe2薄膜與CuIn0.9M0.1Se2薄膜顯微形貌之影響 74
4-5-3退火溫度對CuInSe2薄膜與CuIn0.9M0.1Se2薄膜成份之影響 78
第五章 結論 80
參考文獻 82
參考文獻 [1] A. E. Becquerel, Comt. Rend. Acad. Sci., vol. 9, p. 561, 1839.
[2] R. P. Gale, R. W. McClelland, D. B. Dingle, J. V. Gormle, R. M.Burgess, N. P. Kim, R. A. Mickelsen, B. F. Stanbery, Conference Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee,53,1990.
[3] Martin A. Green, Keith Emery, David L. King, Yoshihirokawa,Wilhelm Warta, Prog. Photovolt: Res. Appl., 15, 35, 2007.
[4]I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, Res. Appl. 16, 235, 2008.
[5] M.A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D.L. Young, B. Egass, R.Noufi, Prog. Photovoltaics Res. Appl. 13, 209, 2005.
[6] W.N. Shafarman, R. Klenk, B.E. McCandless, J. Appl. Phys. 79, 7324, 1996.
[7] U. Rau, M. Schmidt, A. Jasenek, G. Hanna, H.W. Schock, Sol. Energy Mater. Sol. Cells 67, 137, 2001.
[8] S. Marsillac, Appl. Phys. Letters, 81, 1350-1352, 2002.
[9] M. Yuan, Chemistry of Material, 22, 285-287, 2010.
[10] J. Palm, Thin Solid Films, 451-452, 544-551, 2004.
[11] R.N. Bhattacharya, W. Batchelor, J.E. Granata, F. Hasoon, H.Wiesner, K. Ramanathan, J. Keane, and R.N. Noufi, Solar Energy Materials and Solar Cells, vol. 55, pp. 84-94, 1998.
[12] J. S. Park, Z. Dong, Sungtae Kim, and J. H. Perepezko, American Institute of Physics, pp. 3683-3691, 2000.
[13]F. Abou-Elfotouh, D. J. Dunlavy, T. J. Coutts, Solar Cells, 27, 1989.
[14] Fouad Abou-Elfotouh, D. J. Dunlavy, David Cahen, R. Noufi,L. L. Kazmerski and K. J. Bachmann. Solar Energy Research Institute, Golden, Colorado 80401, U.S.A.
[15]T. Dullweber et al., "Study of the effect of gallium grading in Cu(In,Ga)Se2", Thin Solid Films 361-362, pp. 478-481, 2000.
[16] S.H. Wei, A. Zunger, J. Appl. Phys. 78, 3846, 1995.
[17] P.D. Paulson, M.W. Haimbodi, S. Marsillac, R.W. Birkmire, W.N. Shafarman, J. Appl. Phys. 91, 10153, 2002.
[18] S. Marsillac, P.D. Paulson, M.W. Haimbodi, R.W. Birkmire, W.N. Shafarman, Appl. Phys. Lett. 81, 1350, 2002.
[19] J. Olejníček et al. / Thin Solid Films 519, 5329–5334, 2011.
[20] A. Luque, A Martı´, Phys. Rev. Lett. 78, 5014, 1997.
[21] K. W. Boer, Survey of Semiconductor Physics (Van Nostrand Reinhold, New York, 1990), pp. 201, 249, 617.
[22] C. Tablero, Solid State Commun., 133, 97, 2005.
[23] R. Teghil, L. D'Alessio, M. Zaccagnino, D. Ferro,V. Marotta, G. De Maria. Applied Surface Science 173, 233-241, 2001.
[24] Nakata T, Okada T, Maeda M. Deposition of ZnO film by pulsed laser deposition at room temperature. Applied Surface Science 368, 197–198, 2002
[25] S. Acquaviva, A. Perrone, A. Zocco, A. Klini, C. Fotakis. Thin Solid Films 373 , 266-272, 2000.
[26] A.A. Voevodin, M.S. Donley. Surface and Coatings Technology 82, 199-213, 1996.
[27] R. Teghil, L. D’Alessio, A. Santagata, M. Zaccagnino,D. Ferro, D.J. Sordelet. Applied Surface Science 210, 307–317 , 2003.
[28] Melissa Womack, Monica Vendan, Pal Molian. Applied Surface Science 221, 99–109, 2004.
[29] S. Ando, S. Endo, Y. Makita and T. Tsukamoto, “Preparation of CuInSe2 Thin Films by Pulsed Laser Ablation Technique Using CuInSe2 Bulk Crystal Targets”, Proceedings of SPIE, 3550, 156-168, 1998.
[30] A. Yoshida , N. Tanahashi , T. Tanaka , Y. Demizu , Y. Yamamoto, T. Yamaguchi, “Preparation of CuInSe2 thin films with large grain by excimer laser ablation”, Solar Energy Materials and Solar Cells, 50, 7-12, 1998.
[31] A. Tverjanovich, E. N. Borisov, E. S. Vasilieva, O. V. Tolochko, I. E. Vahhi, S. Bereznev, Y. S. Tveryanovich, “CuInSe2 thin films deposited by UV laser ablation”, Solar Energy Materials & Solar Cells, 90, 3624-3632, 2006.
[32] P. Victor, J. Nagaraju, S. B. Krupanidhi, “Pulsed excimer laser ablated copper indium diselenide thin films”, Solid State Communications, 116, 649–653, 2000.
[33] P. Luo, C. Zhu, G. Jiang, “Preparation of CuInSe2 thin films by pulsed laser deposition the Cu–In alloy precursor and vacuum selenization”, Solid State Communications, 146, 57–60,2008.
[34] C. Suryanarayana, E. Ivanov, R. Noufi, M.A. Contreras, J.J. Moore, “Synthesis and processing of a Cu-In-Ga-Se sputtering target”, Thin Solid Films, 332, 340-344, 1998.
[35] A. Catalano Solar Energy Materials and Solar Cells 41/42, 205-217, 1996.
[36] D. G. Zhao, S. J. Xu, M. H. Xie, and S. Y. Tong, “Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire”, Applied Physics Letters, 83, 677-679, 2003.
[37] R. Teghil , L. D'Alessio , A. De Bonis , A. Galasso, P. Villani , A. Santagata .Thin Solid Films 515, 1411-1418, 2006.
[38] Mikel Sanz, Malgorzata Walczak, Rebeca de Nalda, Mohamed Oujja,Jose’ F. Marco , Javier Rodriguez , Jesu’s G. Izquierdo , Luis Ban˜ares , Marta Castillejo .Applied Surface Science 255, 5206-5210, 2009.
[39] L.V. Zhigilei, Applied.Physics.. A 76, 339, 2003.
[40] J.L. Shay, B. Tell, H.M. Kasper, L.M. Schiavone, Phys. Rev. B 7, 4485, 1973.
[41] J. Gonzalez-Hernandez, P.M. Gorley, P.P. Holrley, O.M. Vartsabyuk, Yu.V. Vorobiev, Thin Solid Films, 471, 403-404, 2002.
[42] M. Ortega-Lopez, A. Morales-Acevedo, Thin Solid Films 330, 96, 1998.
[43] C.J. Huang, T.H. Meen, M.Y. Lai, W.R. Chen. Solar Energy Materials & Solar Cells 82, 553-565, 2004.
  • 同意授權校內瀏覽/列印電子全文服務,於2018-07-12起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-07-12起公開。

  • 如您有疑問,請聯絡圖書館