進階搜尋


下載電子全文  
系統識別號 U0026-2806201315114000
論文名稱(中文) 應用三維水文地質模型評估隧道開挖湧水及鄰近水文環境影響-以觀音隧道及谷風隧道為例
論文名稱(英文) Using 3D Hydrological Conceptual Model to Assess the Tunnel Inflow and the Influence of Adjacent Hydrological Enviroment-Examples for Guanying and Gufong Tunnels
校院名稱 成功大學
系所名稱(中) 資源工程學系碩博士班
系所名稱(英) Department of Resources Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 李浩全
研究生(英文) Hao-Xuan Li
學號 N46001062
學位類別 碩士
語文別 中文
論文頁數 111頁
口試委員 指導教授-李振誥
口試委員-譚義績
口試委員-徐國錦
口試委員-羅偉誠
口試委員-朱木壽
中文關鍵字 隧道湧水  GMS  水平衡  敏感性分析 
英文關鍵字 tunnel inflow  GMS  water balance model  sensitivity analysis 
學科別分類
中文摘要   本研究主要利用GMS(Groundwater Modeling System)分析軟體,結合台9線蘇花公路改善工程中預計建置之二隧道-觀音隧道與谷風隧道,蒐集研究區域之地形、地質構造及水文地質等資料,分別建置三維水文地質模型,模擬分析隧道開挖遭遇之湧水量,且針對開挖遭遇到斷層時不同的水力傳導係數施作敏感性分析,以及二隧道建置後對於鄰近水文環境的影響分析。
  本研究首先蒐集及分析研究區域之水文資料建置水平衡模式,包含雨量資料、蒸發散量資料及流量資料,分析求得觀音隧道及谷風隧道鄰近區地下水年平均補注深度與年補注率,其分別約為62.34公分與22.3%。再蒐集區域之地質、DTM(Digital Terrain Model)、及水文地質參數。最後採用GMS(Ground Water Modeling)分析軟體,依據區域之水文地質特性劃分邊界,將上述之資訊分別匯入建置觀音隧道及谷風隧道三維水文地質概念模型,分析其湧水量及流場變化與隧道開挖遭遇斷層時水力傳導係數和湧水量之敏感性分析,以及對鄰近水資源供給之影響評估。
  經所建置之三維水文地質模型模擬顯示,觀音隧道於樟樹山斷層及樟樹山斷層北端破碎剪裂帶由於具高透水性,故有較高的出水量,其區段出水量預測可達1950L/min;而在大理岩段區段出水量預測約達700L/min;在觀音斷層部分區段出水量預測約為550L/min。谷風隧道於鼓音斷層及谷風斷層有較高的出水量,其區段出水量預測可達1350L/min;而在大理岩段及破碎剪裂帶區段出水量約預測可達850L/min。
  針對水力傳導係數與湧水量影響之敏感性分析成果顯示,水力傳導係數愈高時湧水量愈高,當水力傳導係數達到一定值時,湧水量將趨緩增加。本研究亦使用Goodman(1965)之修改式,以舊有台鐵新觀音隧道之隧道半徑、湧水量與壓力水頭為變量,分別求得本研究案例隧道於遭遇四個主要斷層(樟樹山斷層、觀音斷層、鼓音斷層與谷風斷層)之湧水量分別約為1477.77(L/min)、171.05(L/min)、158.00(L/min)及742.36(L/min)。
  區域水資源影響部分,觀音隧道及谷風隧道之模擬年總湧水量為3.07百萬公噸,相較於鄰近南澳南溪集水區與和平溪集水區之年總補注量約431.62百萬公噸,僅約0.71%,就水資源觀點而言,觀音隧道與谷風設置對鄰近水文環境之影響甚微。
英文摘要  This study focused on two tunnels,Guanyin and Gufong which belong with the Improvement Program of Su-hua Highway. Accroding to topography,geological structure and hydrogeological information,building 3D hydrogeological conceptual model to assess the variation of inflow and the impact on adjacent hydrological environment under tunneling excavation.It may provides the engineering safety of tunnel building and environmental assessment.Detailed analysis and assessment of factors which may affect the hydrogeology and issues of inflow.To predict to reduce engineering disasters and the cost of difficult engineering,while achieving goal of sustainable management.
First,collecting and analyzing hydrological information to establish water balance model that contains rainfall data,evapotranspiration data and flow data.Annual groundwater recharge is about 62.34 cm/year and the groundwater recharge ratio is about 22.3% for study area.Then,collecting regional geology data,DTM(Digital Terrain Model) and hydrogeological parameters.Finally,using GMS(Groundwater Modeling System) analysis software,demarcation of the border based on the hydrogeological characteristics of the area.To import the above information respectively to build 3D hydrogeological conceptual model,analysis of changes in its inflow and flow field.
The simulation results show that the Guanyin tunnel has higher inflow which expressed approximately 1,950 L/min when meeting Zhengshushan fault and fracture zone,in marble zone expressed approximately 700 L/min and in Guanyin fault expressed approximately 550 L/min.Gufong tunnel has higher inflow which expressed approximately 1,350 L/min when meeting Guyin fault and Gufong fault ,in marble zone and fracture zone expressed approximately 850 L/min.
This study modified the formula from Goodman(1965) to forecast the inflow which are respectively 1477.77(L/min),171.05(L/min),158.00(L/min) and 742.36(L/min) when construction meet principle faults(Zhengshushan,Guanyin,Guyin and Gufong).Sensitivity analysis of inflow and hydraulic conductivity,indicated that when the hydraulic conductivity is higher ,the inflow will be higher.When the hydraulic conductivity reach a certain value,the inflow will slow down to increase.
Concerning the influence of inflow on regional groundwater recharge,total inflow quantity(without setting up concrete wall) in two tunnels is less than 0.71% of the average annual recharge of sum of 4316.2 million m3 for South Nanao stream and Heiping stream.With the viewpoint ,the effect of tunnel construction is minimal on the adjacent hydorological environment.
論文目次 摘要 I
Abstract III
誌謝 V
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1研究動機與目的 1
1.2研究方法與流程 3
第二章 文獻回顧 5
2.1案例回顧 5
2.2評估方法回顧 7
2.3小結 15
第三章 理論模式 19
3.1.1等效孔隙介質 19
3.1.2三維地下水流控制方程式 19
3.2水文地質概念模型之建置 20
3.3水平衡模式之建置 30
3.4數值模擬分析程式介紹 31
3.5敏感性分析及解析解湧水分析 32
3.6舊有隧道影響評估 33
第四章 研究案例 34
4.1研究區域水文資料分析 35
4.1.1研究區域水文資料蒐集 35
4.1.2雨量資料分析 36
4.1.3蒸發散量資料分析 38
4.1.4地下水補注深度及地下水補注率推估 42
4.1.5地下水位 47
4.2觀音隧道 48
4.2.1研究區域介紹 48
4.2.2研究區域地質 49
4.2.3水文地質概念模型建置 51
4.2.4水文地質參數設定 55
4.2.5水文地質概念模型率定成果 57
4.2.6水文地質概念模型模擬開挖遭遇湧水成果 58
4.2.7鄰近區域於隧道開挖前後地下水水位與流況分析 60
4.3谷風隧道 63
4.3.1研究區域介紹 63
4.3.2研究區域地質介紹 63
4.3.3水文地質概念模型建置 66
4.3.4水文地質參數設置 69
4.3.5三維水文地質模型率定成果 70
4.3.6水文地質概念模型模擬開挖遭遇湧水成果 71
4.3.7鄰近區域於隧道建置前後地下水水位與流況分析 73
4.4敏感性分析 76
4.5應用解析解法反推案例隧道湧水量值 84
4.6舊觀音隧道排水量之影響評估 86
4.7鄰近區域水資源之影響評估 86
第五章 結論與建議 87
5.1結論 87
5.2建議 89
參考文獻 90
附錄A 97
A.1地下水流控制方程式與有限差分方程式 98
A.2迭代運算 105
附錄B 108
B.1Goodman(1965)隧道湧水之解析解 109
參考文獻 1.Allen, R.G., and Pruitt W.O. (1991). FAO-24 reference evapotranspiration factors. J. Irrig. Drain. Eng, pp.758-773.
2.Barnes, B. S. (1939).,The structure of discharge recession curves.Transactions of American Geophysical Union 20, pp. 721-725.
3.Bear, J. (1979).,Hydraulics of groungwater.McGraw-Hill.
4.Blaniney, J. B.,Faunt, C. C. and Hill, M. C. (2006)., A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System Nevada and Califomia, Open-File Report 2006-1104,USGS,USA.
5.Chiu, Y. C. and Chia ,Y. (2012)., The impact of groundwater discharge to the Hsueh-Shan tunnel on the water resources in northern Taiwan Hydrogeology Journal. Volume 20, Issue 8 , pp 1599-1611.
6.Chiocchini, U. and Castaldi, F.(2011)., The impact of groundwater on the excavation of tunnels in two different hydrogeological settings in central Italy. Hydrogeology Journal,19,pp. 651–669.
7.Croft, M.G. (1985)., Ground-water data for McKenzie County,North Dakota: North Dakota Geological Survey, Bulletin80, North Dakota State Water Commission, County Groundwater Studies 37, Part II, 455 p.
8.Darcy,H.P.G.(1856).Lesfonataines publiques de la Ville de Dijon.Victor Dalmont,Paris.
9.El Tani, M. (2003)., Circular tunnel in a semi-infinite aquifer, Tunnelling and Groundwater Space Technology, 18, pp.49-55.
10.Freeze, R. A. and Cherry J. A. (1979).,Groundwater.Prentice-Hall.
11.Gattinoni, P., Scesi, L. and Terrana, S. (2010)., Tunnel Inflow Assessment in Discontinuous Rock Masses:From Numerical Modeling To Empirical Equations, Environmental, Hydraulic, Infrastructures and Surveying Engineering.
12.Gattinoni P., Scesi L., Terrana S. (2011)., Tunnel Inflow Assessment in Discontinous Rock Masses:from Numerical Modeling to Empirical Equations. Piazza Leonardo da Vinci 32, I-20133 Milano, Italy.
13.Goodman, R.E., Moye, D.G., Van Schalkwyk, A., Javandel, I. (1965)., Groundwater inflows during tunnel driving. Engineering Geology 2, 39–56.
14.Hubbert, M. K. (1940).,The theory of ground water motion. J. Geology, 48(8),Pt. 1, pp. 785-944.
15.Hwang, J.H. and Lu, C.C. (2007)., A semi-analytical method for analyzing the tunnel water inflow, Tunneling and Underground Space Technology, 22, pp. 39-46.
16.Jacob, C.E. and Lohman, S.W. (1952)., Nonsteady flow to a well of constant drawdown in an extensive aquifer, Transaction of the American Geophysical Union, 33(4), pp. 559–569.
17.Jamison, W. R. (1979)., Laramide deformation of the Wingate sandstone, Colorado National Monument: A study of cataclastic flow, Ph.D.dissertation, 170 pp., Texas A&M Univ.
18.Jordi, F.C., Enric, V.S. , Jesús, C. , David, M. , Ramon, C., Andrés, P.E. (2011).,Groundwater inflow prediction in urban tunneling with a tunnel boring machine (TBM), Engineering Geology,Vol.121,pp. 46–54.
19.Jorge, M., Javier, S., Rube´n, J. (2002).,Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks”, Engineering Geology, 64, pp. 369-386.
20.Karlsruhe, K. (2001)., Water control when tunneling undwe urban areas in the Olso region. NFF publication, 12(4), 27-33.
21.Kitterød, N.-O. , Colleuille, H., Wong, W,. Pedersen, T.(2000). Simulation of groundwater drainage into a tunnel in fractured rock and numerical analysis of leakage remediation, Romeriksporten tunnel, Norway. Hydrogeology Journal. Volume 8, Issue 5 , pp 480-493.
22.Kolymbas, D. and Wagner, P.(2007)., Groundwater ingress to tunnels – The exact analytical solution, Tunnelling and Underground Space Technology 22,23–27.
23.Lee, C. H., Chen, W. P. and Lee, R. H. (2006)., Estimation of Groundwater Recharge Using Water Balance Coupled with Base-Flow-Record Estimation and Stable-Base-Flow Analysis.Environmental Geology, Vol.51,No 1,pp. 73-82.
24.Lei, S. (1999)., An analytical solution for steady flow into a tunnel, Ground Water, 37(1), pp. 23-26.
25.Lipponen, A. (2007).,Applying GIS to assess the vulnerability of the Paijanne waterconveyance tunnel in Finland. Environ. Geology 53 (3), 493–499.
26.Lombardi, G. (2002).,Private communication.
27.McDonald, M. G., and Harbaugh, A. W.(1988)., A modular three-dimensional finite-difference ground-water glow model, U.S. Geological Survey, Virginia.
28.Molinero, J., Samper, J. and Juanes, R. (2002)., Numerical modelling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks, Engineering Geology, 64, pp. 369-386.
29.Muskat, M. and Wyckoff, R. D.(1937).,The Flow of Homegeneous Fluid Through Porous Media.McGraw-Hill.
30.Passadore. G.,Monego, M., Altissimo, L.,Sottani, A., and Putti, M. Rinaldo, A. ,(2012)., Alternative conceptual models and the robustness of groundwater management scenarios in the multi-aquifer system of the Central Veneto Basin, Italy. Hydrogeology Journal 20,419–433.
31.Park, K.H., Owatsiriwong, A. and Lee, G.G. (2008)., “Analytical solution for steady-state groundwater inflow into a drained circular tunnel in a semi-infinite aquifer: a revisit”, Tunnelling and Underground Space Technology, 23, pp.206-209.
32.Perrochet, P. (2005)., A simple solution to tunnel or well discharge under constant drawdown, Hydrogeology Journal, 13, pp. 886-888.
33.Rat, M.(1973).,Ecoulement et repartition des pressions interstitielles autour des tunnels.Bull.Liaison du Laboratoire des Ponts et Chaussees 68, 109-124.
34.Rutledge, A. T. (1988).,Computer programs for describing the recession of ground-water discharge and for estimeating mean ground-water recharge and discharge from streamflow records-update. U.S. geological survey water-resources investigations report 98-4148,p.43.
35.Sibson, R.H. (1977).,"Fault rocks and fault mechanisms". Journal of the Geological Society 133 (3): 191–213. Retrieved 2009-11-03.
36.Schleiss, A. J.(1988).,Design of reinforced concrete-lined pressure tunnels.International Congress of Tunnels and Water, Madrid, Balkema,2, 1127-1133.
37.Theis, C. V. (1935).,Relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage.Trans.Am.Geoph.Uion Pt. 2,pp.519-524.
38.Tseng, D. J., Tsai, B. R., and Chang, L. C. (2001).,A Case Study on Ground Treatment for a Rock Tunnel with High Groundwater Ingression in Taiwan. Tunneling and Underground Space Technology, 16,pp. 175-183.
39.Yang, F. R., Lee, C. H., Kung, W. J., Yeh, H. F. (2008)., The impact of tunneling construction on the hydrogeological environment of “Tseng-Wen Reservoir Transbasin Diversion Project” in Taiwan.
40.Yang, S. Y., and Yeh, H. D.(2007)., A closed-form solution for a confined flow into a tunnel during progressive drilling in a multi-layer groundwater flow system, Geophysical Research Letters, VOL. 34, L07405.
41.Yeh H. F., and Lee, C. H. (2008). Assessment of Spatial and Temporal Distribution of Reference Evapotranspiration and Pan Evaporation in Taiwan, 2008農業工程研討會,國立台灣大學舉辦,台北。
42.中華民國隧道協會(2003),新永春隧道巨量湧水處理工程技術論文集。
43.中華工程顧問公司(1999),國道東部公路蘇澳花蓮段工程規劃大地工程調查地質鑽探與現場室內試驗報告,國工局。
44.中華工程顧問公司(2003),國道東部公路蘇澳和平段工程初步設計暨配合工作-大地工程調查鑽探取樣與現地試驗工作紀實報告,國工局。
45.中興工程顧問公司(2005),曾文水庫越域引水工程計畫-引水隧道水文地質模式檢測與區域水資源環境影響分析-年度報告,經濟部水利署南區水資源局。
46.台灣世曦工程顧問公司(2010),蘇花改可行性研究與工程規劃暨優先路段設計工作-大地工程調查紀實報告,交通部公路總局。
47.台灣世曦工程顧問公司(2011),台九線蘇花公路南澳和平段新建工程委託監造服務工作服務建議書,交通部公路總局。
48.交通部台灣區國道新建工程局(2000),北宜高速公路施工階段坪林隧道湧水問題評估調查服務工作-第三期評估調查報告。
49.交通部公路總局蘇花公路改善工程處(2012),蘇花改水文地質及水資源環境影響101年下半年度報告。
50.行政院公共工程委員會(2000),台灣地區隧道岩體分類系統暨隧道工程資料庫之建立,第1期,第4冊,工作項目C:台灣地區特殊地質狀況之調查。
51.榮民工程事業管理處(1982),北迴鐵路完工報告。
52.榮民工程公司(2001),東部鐵路改善北迴線新觀音隧道新建工程地質記錄研判分析工作總結報告。
53.王如意、易任(2001),「應用水文學」,國立編譯館出版,茂昌圖書公司。
54.李振誥、李宏徹、黃崇琅、林碧山(1998),岩體隧道滲流量之預測:以坪林隧道為例,中國土木水利工程學刊,第10卷,第4期,595-604。
55.徐義人(2003),「應用水文學」,國立編譯館。
56.陳正勳、侯嘉松(2000),山岳隧道受震行為及分析設計模式探討,中華技術,11-22。
57.陳尉平(2006),應用河川流量歷線推估台灣地下水補注量,國立成功大學資源工程研究所博士論文。
58.黃振昌、宋易倫(2003),Penman-Monteith 方程式蒸氣壓力差最佳計算式之探討,氣象學報,45,53-70。
59.黃俊鴻、許尚逸(2000),山岳隧道之瞬時突發性湧水量與持續性湧水量評估-以新永春隧道為例,岩盤工程研討會論文集,台中,263-272。
60.黃俊鴻(2001),隧道水文地質調查準則,中華民國隧道協會。
61.黃俊鴻(2005),雪山隧道工程施工湧水與鄰近地表、地下水文及翡翠水庫進流變異之關聯研究,交通部台灣區國道新建工程局。
62.張有天(2005),岩石水利學與工程,中國水利水電出版社。
63.張伯勳(2007),流域地下水補注量與補注潛能區之評估,國立成功大學資源工程研究所碩士論文。
64.楊豐榮(2009),山岳隧道開挖湧水及對鄰近水文環境影響之研究,國立成功大學資源工程研究所博士論文。
65.蔣爵光(1991),隧道工程地質,中國鐵道出版社。
66.譚志豪、顧承宇、侯秉承、李民政、吳富洵(2007),曾文越引隧道工程水文地質之調查評估。
67.龔文瑞(2005),曾文水庫越域引水隧道湧水之研究,國立成功大學資源工程研究所碩士論文。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-07-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-07-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw