進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2806201017023100
論文名稱(中文) 輔以自動調頻控制之定電流超音波共振系統研製
論文名稱(英文) A Study and Design of Constant Current Ultrasonic Resonance Systems with Automatic Frequency Control Embedded
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 林佑歷
研究生(英文) You-Li Lin
學號 n2697134
學位類別 碩士
語文別 中文
論文頁數 102頁
口試委員 口試委員-魏忠必
口試委員-黃清池
口試委員-白富升
口試委員-戴政祺
指導教授-黃世杰
中文關鍵字 超音波共振系統  調頻控制  定電流 
英文關鍵字 ultrasonic resonance systems  frequency-control capability  constant current 
學科別分類
中文摘要 壓電驅動電路及控制器設計於超音波共振系統之壓電陶瓷應用技術中,具研發參考價值,故本文即致力於設計及探討換流器電路架構及電路動作分析,並推導壓電陶瓷共振之諧振電路電壓、電流及阻抗對頻率關係,以使換流器之工作頻率能控制於電感性頻段及實現功率晶體之零電壓切換,以降低能量耗損。而在控制器方面,本文應用場規劃邏輯閘陣列晶片作為整體電路控制核心,同時融入電流回授策略執行控制器之調頻判斷準則,以達成有效調頻控制及兼具定電流效能之共振系統。本文所提方法經實作驗證及物體熱熔測試,確可協助驅使壓電陶瓷持續穩定運轉,並具足夠振動幅度,可達工業熱熔需求,應已初具實務研究價值。
英文摘要 Piezoelectric drive systems as well as its controller design have been playing an important role in the ultrasonic resonance systems. Therefore, the effort in this thesis is devoted to the study and design of converter circuit structure, by which the voltage and current of resonance circuit along with relationships between impedance and frequency is investigated. It is anticipated that with the method proposed in this thesis, the working frequency can be well controlled such that energy dissipation is decreased while the zero-voltage switching is realized simultaneously. In this design, the field programmable gate array has been applied for the controller design, where the current feedback strategy is employed as the useful reference, hence completing a constant current ultrasonic resonance system with the frequency-control capability enhanced. This proposed system has been validated on thermal melting tests. It is found that the experimental outcome helps validate the effectiveness of the proposed approach for achieving the industry requirements, while the industry prototype value is also exhibited.
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
符號說明 XII
第一章 緒論 1
1-1 研究背景 1
1-2 文獻探討 2
1-3 研究目的及方法 3
1-4 內容大綱 5
第二章 壓電陶瓷特性分析及其應用 6
2-1 簡介 6
2-2 壓電材料特性 7
2-3 壓電陶瓷製造過程 8
2-4 壓電陶瓷特性分析 9
2-5 壓電陶瓷之穩態電路分析 11
2-6 壓電陶瓷溫度變化特性及控制方法 14
第三章 超音波共振系統理論分析 17
3-1 簡介 17
3-2 適用於超音波共振系統之換流器探討 19
3-2-1 E類換流器 19
3-2-2 全橋換流器 20
3-2-3 半橋換流器 21
3-3 功率晶體之切換損失及柔性切換技術 22
3-4 諧振電路分析 24
3-4-1 壓電陶瓷驅動之諧振電路分析 24
3-4-2 自動調頻之頻寬限制設計 31
3-5 壓電陶瓷共振驅動系統之半橋換流器動作分析 33
第四章 系統硬體電路架構 39
4-1 簡介 39
4-2 主電力電路架構 40
4-3 電流取樣電路 41
4-3-1 整流濾波電路 42
4-3-2 類比-數位轉換器 46
4-4 控制電路 47
4-4-1 定電流控制理論 48
4-4-2 控制訊號產生之除頻電路 52
4-5 功率晶體驅動電路 55
第五章 系統實驗結果 58
5-1 簡介 58
5-2 系統之變動工作頻率及直流輸入電壓測試 61
5-3 系統之變動直流輸入電壓測試 68
5-4 系統功率晶體之零電壓切換測試 74
5-5 系統熱熔物體之定電流效能測試 78
5-6 系統完整實體圖 92
第六章 結論與未來研究方向 94
6-1 結論 94
6-2 未來研究方向 95
參考文獻 96
作者簡介 102
參考文獻 [1] 吳朗,”電子陶瓷-壓電,”全新科技出版社,台北市,1994。
[2] K. Y. Huang, “Application of Piezo-Material on the Force Measurement of Bulkhead under Sloshing Condition,” Master Thesis, National Cheng Kung University, 2009.
[3] Y. H. Huang, “Design and Implementation of Resonant Inverters for Piezoelectric Transducer Systems Applications,” Master Thesis, National Cheng Kung University, 2009.
[4] C. Kauczor and N. Frohleke, “Inverter Topologies for Ultrasonic Piezoelectric Transducers with High Mechanical Q-Factor,” Annual IEEE Power Electronics Specialists Conference, Aachen Germany, Vol. 4, pp. 2736-2741, 2004.
[5] T. Yu, H. Lee, D. Lee, S. Song, D. Kim, and S. Park, “Design of LC Resonant Inverter for Ultrasonic Metal Welding System,” 2008 International Conference on Smart Manufacturing Application, South Korea, pp. 543-548, April 2008.
[6] R. Li, N. Frohleke and J. Bocker, “LLCC-PWM Inverter for Driving High-Power Piezoelectric Actuators,” Power Electronics and Motion Control Conference, Paderborn Germany, pp. 159-164, Sept. 2008.
[7] J. Tsujino, M. Hongoh and T. Ueoka, “Welding Characteristics of 40kHz Ultrasonic Plastic Welding System Using Fundamental and Higher Resonance Frequency Vibrations,” IEEE Ultrasonics Symposium, Yokohama Japan, Vol. 1, pp. 699-702, Oct. 2002.
[8] M. Hongoh, M. Yoshikuni, H. Miura, T. Ueoka, and J. Tsujino, “Configuration of a 20-mm-Diameter 150kHz Ultrasonic Longitudinal Virbration System for Plastic Welding,” IEEE Ultrasonics Symposium, Yokohama Japan, Vol. 3, pp. 2326-2329, Aug. 2004.
[9] J. Tsujino, M. Hongoh, M. Yoshikuni, H. Hashii, and T. Ueoka, “Configuration of a 30-mm-Diameter 94kHz Ultrasonic Longitudinal Vibration System for Plastic Welding,” IEEE Ultrasonics Symposium, Yokohama, Japan, Vol. 1, pp. 703-706, Oct. 2003.
[10] J. H. Lee, H. C. Lee, J. H. Choi, S. J. Park, and H. G. Nam, “10kW Industrical Ultrasonic Welder Design,” 31st International Telecommunications Energy Conference, South Korea, pp. 1-6, 2009.
[11] M. Takasaki, Y. Maruyama and T. Mizuno, “Resonance Frequency Tracking System for Langevin Type Ultrasonic Transducers,” International Conference on Mechatronics and Automation, Harbin, China, pp. 3817-3822, Aug. 2007.
[12] C. Wallenhauer, B. Gottlieb, R. Zeichfusl, and A. Kappel, “Efficiency-Improved High-Voltage Analog Power Amplifier for Driving Piezoelectric Actuators,” IEEE Transactions on Circuits and Systems I: Regular Papers, Munich, Germany, Vol. 57, pp. 291-298, Jan. 2010.
[13] V. N. Khmelev, R. V. Barsukov, D. V. Genne, and S. N. Tsyganok, “Adaptive System of the Electric Generator Matching with Piezoelectric Ultrasonic Vibratory System for Various Technological Problems,” 9th International Workshop and Tutorials on Electron Devices and Materials, Russia, pp. 246-249, July 2008.
[14] V. N. Khmelev, R. V. Barsukov, S. N. Tsyganok, and M. V. Khmelev, “Adaptive Phase Lock System of Ultrasonic Electronic Generators,” 7th International Siberian Workshop and Tutorials on Electron Devices and Material, pp. 229-231, July 2006.
[15] Q. Peng, H. Wang, X. Su, and X. Lu, “A New Design of the High-Power Ultrasonic Generator,” Control and Decision Conference, Yantai Shandong, pp. 3800-3803, July 2008.
[16] C. Volosence, “Control System for Ultrasonic Welding Devices,” IEEE International Conference on Automation, Quality and Testing, Robotics, Timisoara, Vol. 2, pp. 135-140, May 2008.
[17] J. M. Alonso, C. Ordiz, M. A. Dalla Costa, J. Ribas, and J. Cardesin, “High-Voltage Power Supply for Ozone Generation Based on Piezoelectric Transformer,” IEEE Transactions on Industry Applications, Gijon, Spain, Vol. 45, pp. 1513-1523, July 2009.
[18] F. J. Lin, R. Y. Duan and H. H. Lin, “An Ultrasonic Motor Drive Using LLCC Resonant Technique,” 30th Annual IEEE Power Electronics Specialists Conference, Charleston SC, Vol. 2, pp. 947-952, Jun. 1999.
[19] K. H. Ma, W. C. Chang and Y. C. Lee, “A Simple Class-E Inverter Design for Driving Ultrasonic Welding System,” International Conference on Power Electronics and Drive Systems, Taipei, Taiwan, pp. 894-896, Nov. 2009.
[20] K. H. Ma, W. C. Chang and Y. C. Lee, “A New Tracking Method with FPGA Chip for Ultrasonic Welding System,” International Conference on Power Electronics and Drive Systems, Taipei, Taiwan, pp. 369-370, Nov. 2009.
[21] Y. C. Yeh, “Piezoelectric Ceramics Transformer,” Master Thesis, National Central University, 2004.
[22] P. Fabijanski and R. Lagoda, “Genetic Identification of Parameters the Sandwith Piezoelectric Ceramic Transducers for Ultrasonic Systems, ” Power Electronics and Motion Control Conference, Pozana, Europe, pp. 2055-2058, Sept. 2008.
[23] 許益适 編譯,壓電陶瓷新技術,文笙書局,1996年。
[24] S. J. Lin, “A Study of Dynamic Behaviors for Horn Clamping on Langevin Vibrators,” Master Thesis, National Tsing Hua University, 2004.
[25] J. Tsujino, M. Hongoh, M. Yoshikuni, H. Miura, and T. Ueoka, “Welding Characteristics and Temperature Rise of Various Frequency Ultrasonic Plastic Welding,” IEEE Ultrasonics Symposium, Vol. 1, pp. 701-712, Sept. 2005.
[26] T. Xu, “Development of Power Supply Technology for Ultrasonic Wave Generator,” Cleaning Technology, Vol. 2, pp. 10-17, June 2004.
[27] L. Parrini, “New Technology for the Design of Advanced Ultrasonic Transducer for Wire Bonding,” IEEE Transcations on Electronics Packing Manufacturing, Vol. 26, pp. 37-45, Jan. 2003.
[28] S. Lin, “Effect of Electric Load Impedances on the Performance of Sandwich Piezoelectric Transducers,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Xian China, Vol. 51, pp. 1280-1286, Oct. 2004.
[29] M. Umeda, K. Nakamura and S. Ueha, “The Measurement of High-Power Characteristics for a Piezoelectric Transducer Based on the Electrical Transient Response,” Jpn. J. Appl. Phys. Vol. 37, pp. 5322-5325, 1998.
[30] Y. J. Woo, S. K. Kim and G. H. Cho, “Voltage-Clamped Class-E Inverter with Harmonic Tuning Network for Magnetron Drive,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 53, pp. 1456-1460, Dec. 2006.
[31] J. M. Rivas, Y. Han, O. Leitermann, A. D. Sagneri, and D. J. Perreault, “A High-Frequency Resonant Inverter Topology with Low-Voltage Stress,” IEEE Transactions on Power Electronics, Vol. 23, pp. 1759-1771, July 2008.
[32] C. H. Lin, Y. Lu, H. J. Chiu, and C. L. Ou, “Eliminating the Temperature Effect of Piezoelectric Transformer in Backlight Electronic Ballast by Applying the Digital Phase-Locked-Loop Technique,” IEEE Transactions on Industrial Electronics, Vol. 54, No. 2, pp. 1024-1031, April 2007.
[33] K. Agbossou, J. L. Dion, S. Carignan, M. Abdelkrim, and A. Cheriti, “Class D Amplifier for a Power Piezoelectric Load, ” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 47, pp. 1036-1041, July 2000.
[34] F. J. Lin, R. J. Wai, K. K. Shyu, and T. M. Liu, “Recurrent Fuzzy Neural Network Control for Piezoelectric Ceramic Linear Ultrasonic Motor Drive,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 48, pp. 900-913, Jul. 2001.
[35] D. Puyal, L. A. Barragan, J. Acero, J. M. Burdio, and I. Millan, “A FPGA-Based Digital Modulator for Full-or Half-Bridge Inverter Control,” IEEE Transactions on Power Electronics, Vol. 21, pp. 1479-1483, Sept. 2006.
[36] Y. K. Lo and K. J. Pai, “Feedback Design of a Piezoelectric Transformer-Based Half-Bridge Resonant CCFL Inverter,” IEEE Transactions on Industrial Electronics, Vol. 54, pp. 2716-2723, Oct. 2007.
[37] J. M. Alonso, C. Ordiz, M. A. Dalla Costa, J. Ribas, and J. Cardesin, “High-Voltage Power Supply for Ozone Generation Based on Piezoelectric Transformer,” IEEE Transactions on Industry Applications, Vol. 45, pp. 1513-1523, July 2009.
[38] G. Gnad and R. Kasper, “A Power Drive Control for Piezoelectric Actuators,” IEEE International Symposium on Industrial Electronics, Magdeburg Germany, Vol. 2, pp. 963-967, May 2004.
[39] 梁適安,交換式電源供應器之理論與實務設計,全華科技圖書股份有限公司,民國2001年。
[40] Elegant Power Application Research Center,電力電子學綜論,全華科技股份有限公司,民國96年。
[41] A. Ahmed, “Power Electronics for Technology,” Prentice Hall, International Editions, 1999.
[42] High-Current Bridge Rectifier KBC2506 Data Sheet, Won-Top Electronics, 2002.
[43] Power MOSFET IRFPS37N50A Data Sheet, International Recitifier, 2010.
[44] V. N. Khmelev, A. N. Slivin, R. V. Barsukov, S. N. Tsyganok, I. I. Savin, A. V. Shalunov, S. V. Levin, and A. D. Abramov, “Measurement of Parameters and Automatic Selection of Optimal Modes During Ultrasonic Welding of Thermoplastic Material,” 7th Annual International Workshop and Tutorials on Electron Devices and Materials, pp. 289-293, July 2006.
[45] JFET-Input Operational Amplifiers TL084 Data Sheet, Texas Instruments Inc., November 1992.
[46] CTL-6-P-4-H Data-Sheet, OEM.
[47] CMOS 8-bit A/D Converters ADC0804 Data-Sheet, Philips Semiconductors, Oct 2002.
[48] Photo-Coupler TLP-250 Data-Sheet, TOSHIBA Corporation, June 2004.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw