
系統識別號 
U00262805201913393300 
論文名稱(中文) 
應用於5G無線通訊系統之新型微小化多層交錯耦合結構帶通濾波器與多頻多工器 
論文名稱(英文) 
New Compact Bandpass Filters and Multiplexers Using The Multilayer CrossCoupling Structure and Its Application to 5G Wireless Communication System 
校院名稱 
成功大學 
系所名稱(中) 
微電子工程研究所 
系所名稱(英) 
Institute of Microelectronics 
學年度 
107 
學期 
1 
出版年 
107 
研究生(中文) 
陳永維 
研究生(英文) 
YungWei Chen 
學號 
Q18021111 
學位類別 
博士 
語文別 
英文 
論文頁數 
99頁 
口試委員 
指導教授蘇炎坤 共同指導教授吳宏偉 口試委員莊文魁 口試委員張守進 口試委員吳孟奇 口試委員洪子聖 口試委員張忠誠 口試委員蘇德仁 口試委員洪政源

中文關鍵字 
多頻濾波器
多層基板
多工器
步階式阻抗共振器

英文關鍵字 
Multiband bandpass filter
Multilayered substrate
Stepped impedance resonator
Stubloaded resonator

學科別分類 

中文摘要 
本論文內容主要分為五部分： （a）微小化多層四頻帶通濾波器之設計（b）新型多層五頻帶通濾波器; （c）利用半集總短路步階阻抗共振器實現微小化三工器（d）利用短截線負載諧振器之新型微小化五工器; （e）為多頻段無線通信系統設計新的八通道雙工器。
第一部分介紹一種多層技術的微小型四頻帶通濾波器。 該濾波器設計為具有1.8, 2.4, 3.5和4.2 GHz的四頻段。 透過控制附載樁式步階式阻抗共振器（Stub loaded stepped impedance resonator, SLSIR）的阻抗和長度比，同時產生四個通帶。 通過使用附載樁式步階式阻抗共振器，可以輕鬆實現具有緊密通帶的濾波器。 寬止帶(Wide stopband)的頻率響應是使用缺陷接地結構（Defected ground structure, DGS）產生，並在4.2到12 GHz之間有25 dB的寬止帶響應。
於第二部分的研究中，則介紹一種採用多層技術之五通帶通濾波器。 該濾波器設計為具有1.8, 2.4, 3.5, 4.2和5.2 GHz的五個通帶。 通過控制附載樁式步階式阻抗共振器（Stub loaded stepped impedance resonator, SLSIR）和非對稱步階式阻抗共振器(Asymmetric stepped impedance resonator, ASIR)的阻抗比和長度比，同時產生這五個通帶。 使用樁式步階式阻抗共振器和非對稱步階式阻抗共振器可以輕鬆實現具有緊密通帶的濾波器。
於第三部分的研究中，則介紹一種使用半集總短路步階式阻抗共振器的微小型三工器。 三工器設計為2.4 / 3.5 / 5.2 GHz。 三工器由三對半集短路步階式阻抗共振器(Semilumped shortended stepped impedance resonator)和源負載耦合線(Sourceloaded coupling line)組成。 通過適當地調整半集總短路步階式阻抗共振器的阻抗比（R），長度比（α）和電感槽孔，可以容易地確定三個通道頻率。
於第四部份的研究中，則介紹一種使用半集總短路步階式阻抗共振器(Semilumped shortended stepped impedance resonator)的微小型五工器。 五通道由五對步階式阻抗共振器組成，每個通道的諧振器中心都有短路短截線。 通過適當地調整步階式阻抗共振器的阻抗比（K）和長度比（α），可以容易地確定五個頻率。
最後，於第五部分的研究中則提出了一種新的八通道雙工器（1.575 / 2.4 / 3.5 / 5.2 GHz和1.8 / 2.6 / 4.2 / 5.7 GHz），其具有簡單的源負載輸入/輸出結構，包含四對耦合非對稱步進阻抗諧振器(Asymmetric stepped impedance resonator, ASIR)緊湊的電路尺寸。 通過調整非對稱步階式阻抗共振器的阻抗比和長度比，可以容易地確定每個諧振模式，並且可以實現具有接近四通帶的雙工器。

英文摘要 
The thesis divides into five parts: (a)Design of compact multilayered quadband bandpass filter (b) new multilayered quintband bandpass filter; (c) compact microstrip triplexer using semilumped shortended stepped impedance resonators (d) new compact pentaplexer using stubloaded stepped impedance resonators; and (e)design of new eightchannel diplexer for multiband wireless communication system.
Firstly, this study proposed a compact quadband bandpass filter (BPF) using multilayer substrate technique. The filter is designed to have quadband at 1.8, 2.4, 3.5 and 4.2 GHz. The four passbands are simultaneously generated by controlling the impedance and length ratios of the stubloaded stepped impedance resonators (SIRs). By using the stubloaded SIRs, the filter with closed passbands can be easily achieved. The frequency response of wide stopband is generated by using the defected ground structure (DGS) and having around 25 dB stopband from 4.2 to 12 GHz.
Then, a quintpassband bandpass filter that uses a multilayer substrate technique is investigated in this part of dissertation. The filter is designed to have quintpassband at 1.8, 2.4, 3.5, 4.2, and 5.2 GHz. These five passbands are simultaneously generated by controlling the impedance ratios and length ratios of the stubloaded stepped impedance resonators (SIRs) and asymmetric SIRs. The filter with closed passbands can easily be achieved using the stubloaded SIRs and asymmetric SIRs.
Then, a compact microstrip triplexer using the semilumped shortended stepped impedance resonators is proposed. The triplexer is designed at 2.4 / 3.5 / 5.2 GHz. The triplexer is composed of three pairs of semilumped shortended stepped impedance resonators and the sourceload coupling lines. By properly tuning the impedance ratio (R), length ratio (α) and inductive via hole of the semilumped shortended stepped impedance resonators, three channels (passbands) frequencies can be easily determined. To improve the passband selectivity, the sourceload coupling lines are designed to correspond to the quarterwavelength at the center frequency for each channel. The proposed triplexer is showing a simple configuration, an effective design method and a small circuit size.
Then, we proposed a compact pentaplexer using the stubloaded stepped impedance. The pentaplexer is composed of five pairs of stepped impedance resonators with shortcircuited stub at the center of resonator for each channel (passbands). By properly tuning the impedance ratio (K) and length ratio (α) of the stepped impedance resonators, five channels frequencies can be easily determined.
Finally, we proposed a new eightchannel diplexer (1.575/2.4/3.5/5.2 GHz and 1.8/2.6/4.2/5.7 GHz) with a simple sourceload input/output structure containing four pairs of coupled asymmetric steppedimpedance resonators (SIRs) in a compact circuit size. By tuning the impedance ratio and length ratio of the asymmetric steppedimpedance resonators (SIRs), each resonant mode can be easily determined, and the diplexer with close quadpassbands (quadchannels) can be implemented.

論文目次 
Abstract (in Chinese) I
Abstract (in English) III
Acknowledgement V
Contents VI
List of tables VIII
List of figures IX
Chapter 1 Introduction 1
1.1 Background 1
1.2 General review of multiband filters 1
1.2.1 Review of quadband filters 2
1.2.2 Review of quintband filters 2
1.2.3 Review of multiplexer 3
1.3 Organization of this dissertation 3
Chapter 2 Planar Transmission Line and Filter Design Theory 7
2.1 Basic theory of microwave filters 7
2.2 General the theory of couplings 10
2.3 Selective filters with a single pair of transmission zeros 16
2.4 Introduction of stepped impedance resonator 17
Chapter 3 Design of Compact Multilayered Quadband Bandpass Filter 24
3.1 Introduction 24
3.2 Filter Design 25
3.3 Result 27
3.4 Summary 27
Chapter 4 New Multilayered Quintband Bandpass Filter 34
4.1 Introduction 34
4.2 Design of quint filter 34
4.3 Result and discussion 38
4.4 Summary 38
Chapter 5 Compact Microstrip Triplexer Using SemiLumped ShortEnded Stepped Impedance Resonators 45
5.1 Introduction 45
5.2 Triplexer Design 45
5.3 Result and discussion 47
5.4 Summary 48
Chapter 6 New Compact Pentaplexer Using StubLoaded Stepped Impedance Resonators 55
6.1 Introduction 55
6.2 Design of the pentaplexer 56
6.3 Result and discussion 57
6.4 Summary 58
Chapter 7 Design of New EightChannel Diplexer for Multiband Wireless Communication System 64
7.1 Introduction 64
7.2 Design of eightchannel diplexer 65
7.3 Result and discution 69
7.4 Summary 70
Chapter 8 Conclusions and Future work 84
8.1 Conclusions 84
8.2 Future work 85
References 87
Publication list 96

參考文獻 
Chapter 1
[1]https://yukima.me/cbradiofrequencychart.html/cbradiofrequencychartnewspectrumallocationinindiajourneysofar
[2]https://zhuanlan.zhihu.com/p/62601055
[3]http://wangofnextdoor.blogspot.com/2018/06/lcp.html
[4]https://www.microwavejournal.com/
[5]S. Luo, L. Zhu, and S. Sun, “Compact dualmode tripleband bandpass filters using three pairs of degenerate modes in a ring resonator,” IEEE Trans. Microw. Theory Tech., vol. 59, pp.12221229, 2011.
[6]W. Y. Chen, S. J. Chang, M. H. Weng, Y. H. Su, and H. Kuan, “Simple method to design a triband bandpass filter using asymmetric SIRs for GSM, Wimax and WLAN applications, Microwave Opt. Technol. Lett., vol. 53, pp. 15731576, 2011.
[7]C. F. Chen, T. Y. Huang, and R. B. Wu, “Design of dual and triplepassband filters using alternately cascaded multiband resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no.9, pp. 3550–3558, Sept. 2006.
[8]F. C. Chen and Q. X Chu, “Design of compact triband bandpass filters using assembled resonators,” IEEE Microw. Theory Tech., vol. 57, pp. 165–171, 2009.
[9]C. I G. Hsu, C. H. Lee, and Y. H. Hsieh, “Triband bandpass filter with sharp passband skirts designed using trisection SIRs,’’ IEEE Microw. Wireless Compon. Lett., vol. 18, no. 1, pp. 1921, Jan. 2008.
[10]S. Gao , Z. Y. Xiao, H. H. Hu, “A novel compact dualband bandpass filter using SIRs with openstub line,” Microwave Conference, 2008 ChinaJapan Joint, pp. 464466, 2008.
[11]C. M. Cheng and C. F. Yang, “Develop quadband (1.57/2.45/3.5/5.2 GHz) bandpass filters on the ceramic substrate,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 268–270, May 2010.
[12]H. W. Wu and R. Y. Yang, “A new quadband bandpass filter using asymmetric stepped impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 4, pp. 203–205, Apr. 2011.
[13]S. C. Lin, “Microstrip dual/quadband filters with coupled lines and quasilumped impedance inverters based on parallelpath transmission,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 1937–1946, Aug. 2011.
[14]J. Xu, W. Wu, and C. Miao, “Compact microstrip dual/tri/quadband bandpass filter using open stubs loaded shorted steppedimpedance resonator,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 9, pp. 3187–3199, Sep. 2013.
[15]C. F. Chen, T. M. Shen, T. Y. Huang and R. B. Wu, “Design of multimode nettype resonators and their applications to filters and multiplexers,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 4, pp. 848856, Apr. 2011.
[16]H. W. Wu, S. H. Huang and Y. F. Chen, “Design of new quadchannel diplexer with compact circuit size,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 5, pp. 240242, May. 2013.
[17]W. H. Tu and W. C. Hung, “Microstrip eightchannel diplexer with wide stopband,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 11, pp. 272274, Nov. 2014.
[18]S. Hong and K. Chang, “A 10–35GHz sixchannel microstrip multiplexer for wideband communication systems,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1370–1378, Apr. 2006.
[19]X. Guan, F. Yang, H. Liu and L. Zhu, “Compact and highisolation diplexer using dualmode stubloaded resonators,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 6, pp. 385387, Jun. 2014.
[20]J. Y. Wu, K. W. Hsu, Y. H. Tseng and W. H. Tu, “Highisolation microstrip triplexer using multiplemode resonators,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp. 173175, Apr. 2012.
[21]K. W. Hsu, W.C. Hung and W. H. Tu, ‘Compact quintband microstrip bandpass filter using doublelayered substrate,’ in IEEE MTTS Int. Microw. Symp. Dig., Seattle, WA, USA, pp. 1–4, 2013.
[22]C.F Chen, ‘Design of a compact microstrip quintband filter based on the trimode stubloaded steppedimpedance resonators,’ IEEE Microw. Wireless Compon. Lett., vol. 22, no. 7, pp. 357–359, 2012.
[23]P. H. Deng, B. L. Huang and B. L. Chen, ‘Designs of microstrip four and fivechannel multiplexers using branchlineshaped matching circuits,’ IEEE Transactions on Components, Packaging And Manufacturing Technology., vol. 63, no. 12, pp. 13311338, 2015.
[24]J. Xu, W. Wu and G. Wei, ‘Compact multiband bandpass filters with mixed electric and magnetic coupling using multiplemode resonator,’ IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 3909–3919, 2015.
[25]Y. W. Chen, Z. J. Tai, H. W. Wu, Y. K. Su and Y. H. Wang, ‘Design of compact multilayered quadband bandpass filter,’ 2017 IEEE International Microwave Symposium (IMS), Hawaii, USA., pp. 879–881, 2017.
[26]Y. W. Chen, H. W. Wu and Y. K. Su, ‘Design of multilayered bandpass filter with independently controllable triplepassband response,’ International Journal of Microwave and Wireless Technologies, vol. 6, no. 6, pp. 611–618, 2014.
Chapter 2
[1]D. M. Pozar, Microwave Engineering, Second Edition. John Wiley & Sons, Inc., 1998.
[2]G. L. Matthaei, L. Young, E. M. T. Jone, Microwave Filters, Impedancemaching Networks and Coupling Strustures, New York, McGraw Hill, 1964.
[3]H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatomi, “A Miniaturized Monolithic Dualband Filter Using Ceramic Lamination Technique for Dualmode Portable Telephones,” in IEEE MTTS Int. Microw. Symp. Dig., vol. 2, pp. 789–792. 1997.
[4]K. C. Gupta, R. Garg, I. J. Bahl, and P. Bhartia, Microstrip lines and slotlines, Second Edition, Artech House Inc., Norwood, MA, pp.9192, 1996.
[5]James, J. R. and Henderson, A., “Highfrequency behaviour of microstrip
[6]opencircuit terminations,” IEE J. on Microwaves, Optics and Acoustics, vol. 3, pp. 205218, Sep. 1979.
[7]C. Veyres and V. F. Hanna,‘‘Extension of the Application of Conformal Mapping Techniques to Coplanar Lines with Finite Dimensions,’’ Int. J. Electron., vol. 48, no. 1,pp. 47—56, Jan. 1980.
[8]R. E. Collin, Foundations for Microwave Engineering, 2nd ed., New York:McGrawHill, 1992, pp. 178179.
[9]R. B. Marks, ‘‘A Multiline Method of Network Analyzer Calibration,’’ IEEE Trans. Microwave Theory Tech., vol. 39, no. 7, pp. 12051215, July 1991.
[10]http://probenotes.com/Notes/Filter/FilterSpec.html.
[11]G. L. Matthaei, L. Young, E. M. T. Jone, Microwave Filters, ImpedanceMaching Networks and Coupling Strustures, New York, McGraw Hill, 1964.
[12]S. F. Chang, Y. H. Jeng, and J. L. Chen, Dualband stepimpedance bandpass filter for multimode wireless LANs, IEE Electron. Lett., no. 40, pp. 3839, 2004.
[13]S. F. Chang, J. L. Chen, and S. C. Chang, New dualband bandpass filters with stepimpedance resonators comb and hairpin structures, in Proc. Asia Pacific Microw. Conf., 2003, pp. 793–796.
[14]S. Sun and L. Zhu, Coupling dispersion of parallelcoupled microstrip lines for dualband filters with controllable fractional pass bandwidths, in IEEE MTTS Int. Dig., 2005, pp. 21952198.
[15]M. Makimoto and S. Yamashita, Microwave Resonators and Filters for Wireless Communication: Theory, Design and Application, SpringerVerlag, 2000.
[16]M. H. Weng, C. H. Kao, and Y. C. Chang, “A compact dualband bandpass filter with high band selectivity using crosscoupled asymmetric SIRs for WLANs,” Journal of Electromagnetic Waves and Applications, vol. 24, pp. 161168, 2011.
[17]X.Y. Zhang, J.X. Chen, Q. Xue, and S.M. Li, “Dualband bandpass filters using stubloaded resonators, ’’IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp.583585, Aug. 2007.
Chapter 3
[1]K. W. Hsu, W. C. Hung and W. H. Tu,"Compact QuintBand Microstrip Bandpass Filter Using DoubleLayered Substrate," 2013 IEEE International Microwave Symposium (IMS),seattle. USA.
[2]C. M. Cheng and C. F. Yang, "Develop quadband bandpass filters on the ceramic substrate, "IEEE Microw. Wireless Compon. Lett.,vol. 20, no.5, pp. 268230, May 2010.
[3]K. W. Hsu and W. H. Tu, "Design of a Novel FourBand Microstrip Bandpass Filter Using Double Layered Substrate," 2009 IEEE International Microwave Symposium (IMS), Boston, USA.
[4]J. Xu, W. Wu and C. Miao, “Compact microstrip dual/tri/quadband bandpass filter using open stubs loaded shorted steppedimpedance resonator,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 9, pp. 3187–3199, Sep. 2013.
[5]S. C. Lin, “Microstrip dual/quadband filters with coupled lines and quasilumped impedance inverters based on parallelpath transmission,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 1937–1946, Aug. 2011.
[6]C. Y. Hsu, C. Y. Chen and H. R. Chuang, “A miniaturized dualband bandpass filter using embedded resonators,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp. 658659, Dec. 2011.
[7]IE3D Simulator, Zeland Softw., Inc., Fremont, CA, USA, 2002.
[8]H. W. Wu, Y. F. Chen and Y. W. Chen, “Multilayered dualband bandpass filter using stubloaded steppedimpedance and uniformimpedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 3, pp. 114116, Mar. 2012.
[9]C. M. Cheng and C. F. Yang, “Develop quadband (1.57/2.45/3.5/5.2 GHz) bandpass filters on the ceramic substrate,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 268–270, May 2010.
[10]H. W. Wu and R. Y. Yang, “A new quadband bandpass filter using asymmetric stepped impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 4, pp. 203–205, Apr. 2011.
Chapter 4
[1]K. W. Hsu, W.C. Hung and W. H. Tu, ‘Compact quintband microstrip bandpass filter using doublelayered substrate,’ in IEEE MTTS Int. Microw. Symp. Dig., Seattle, WA, USA, pp. 1–4, 2013.
[2]C.F Chen, ‘Design of a compact microstrip quintband filter based on the trimode stubloaded steppedimpedance resonators,’ IEEE Microw. Wireless Compon. Lett., vol. 22, no. 7, pp. 357–359, 2012.
[3]P. H. Deng, B. L. Huang and B. L. Chen, ‘Designs of microstrip four and fivechannel multiplexers using branchlineshaped matching circuits,’ IEEE Transactions on Components, Packaging And Manufacturing Technology., vol. 63, no. 12, pp. 13311338, 2015.
[4]J. Xu, W. Wu and G. Wei, ‘Compact multiband bandpass filters with mixed electric and magnetic coupling using multiplemode resonator,’ IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 3909–3919, 2015.
[5]Y. W. Chen, Z. J. Tai, H. W. Wu, Y. K. Su and Y. H. Wang, ‘Design of compact multilayered quadband bandpass filter,’ 2017 IEEE International Microwave Symposium (IMS), Hawaii, USA., pp. 879–881, 2017.
[6]Y. W. Chen, H. W. Wu and Y. K. Su, ‘Design of multilayered bandpass filter with independently controllable triplepassband response,’ International Journal of Microwave and Wireless Technologies, vol. 6, no. 6, pp. 611–618, 2014.
[7]IE3D Simulator, Zeland Softw., Inc., Fremont, 2002. CA, USA.
[8]H. W. Wu, Y. F. Chen and Y. W. Chen, ‘Multilayered dualband bandpass filter using stubloaded steppedimpedance and uniformimpedance resonators,’ IEEE Microw. Wireless Compon. Lett., vol. 22, vol. 3, pp. 114116, 2012.
[9]Hong, J. S. Microstrip Filters for RF/Microwave Application, 2nd Edition, John Wiley & Sons, Inc., 2011.
[10]C. M. Cheng and C. F. Yang, “Develop quadband (1.57/2.45/3.5/5.2 GHz) bandpass filters on the ceramic substrate,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 268–270, 2010.
[11]H. W. Wu and R. Y. Yang, ‘A new quadband bandpass filter using asymmetric stepped impedance resonators,’ IEEE Microw. Wireless Compon. Lett., vol. 21, no. 4, pp. 203–205, 2011.
[12]S. C. Lin, ‘Microstrip dual/quadband filters with coupled lines and quasilumped impedance inverters based on parallelpath transmission,’ IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 1937–1946, 2011.
[13]J. Xu, W. Wu and C. Miao, ‘Compact microstrip dual/tri/quadband bandpass filter using open stubs loaded shorted steppedimpedance resonator,’ IEEE Trans. Microw. Theory Techn., vol. 61, no. 9, pp. 3187–3199, 2013.
[14]F. Wei, P. Y. Qin, Y. J. Guo and X. W. Shi,’ Design of multiband bandpass filters based on stub loaded steppedimpedance resonator with defected microstrip structure.’ IET Microwaves, Antennas & Propagation, vol. 10, no. 2, pp. 230 – 236, 2016.
[15]C. H. Lee, C. I. G. Hsu, S. X. Wu and P. H. Wen, ’ Balanced quadband diplexer with wide commonmode suppression and high differentialmode isolation.’ IET Microwaves, Antennas & Propagation, vol. 10, no. 6, pp. 599–603, 2016.
Chapter 5
[1]Deng P. H., Lai M. I., Jeng S. K. and Chen C. H., “Design of matching circuits for microstrip triplexers based on steppedimpedance resonators,” IEEE Trans. Microw. Theory Tech., 2006, pp. 41854192.
[2]T. Yang, P. L. Chi and T. Itoh, “Compact QuarterWave Resonator and Its Applications to Miniaturized Diplexer and Triplexer,” IEEE Trans. Microw. Theory Tech., 2011, pp. 260269.
[3]C. F. Chen, T. Y. Huang, T. M. Shen and R. B. Wu, “A miniaturized microstrip common resonator triplexer without extra matching etwork,” AsiaPacific Microw. Conf., 2006, pp. 14391442.
[4]J. Y. Wu, K. W. Hsu, Y. H. Tseng, and W. H. Tu, “Highisolation microstrip triplexer using multiplemode resonators,” IEEE Trans. Microw. Theory Tech., 2012, pp. 173175.
[5]C. W. Tang and C. T. Tseng, “Design of A Packaged Microstrip Triplexer With StarJunction Topology,” European Microwave Conference., 2012, pp. 459462.
[6]M. E. Goldfarb and R. A. Pucel, “Modeling via hole grounds in microstrip,” IEEE Microw. Guid. Wave Lett., 1991, pp. 135–137.
[7]IE3D Simulator. Fremont, CA: Zeland Software, Inc., 2002.
[8]J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, 2nd ed. New York: Wiley, 2011, ch. 9.
Chapter 6
[1]P. H. Deng, M. I. Lai, S. K. Jeng, C. H. Chen, “Design of matching circuits for microstrip triplexers based on steppedimpedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 41854192, Dec. 2006.
[2]T. Yang, P. L. Chi and T. Itoh, “Compact QuarterWave Resonator and Its Applications to Miniaturized Diplexer and Triplexer,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 260269, Feb. 2011.
[3]C. F. Chen, T. Y. Huang, T. M. Shen and R. B. Wu, “A miniaturized microstrip common resonator triplexer without extra matching etwork,” AsiaPacific Microw. Conf., pp. 14391442, Dec. 2006.
[4]S. J. Zeng, J. Y. Wu and W. H. Tu, “Compact and HighIsolation Quadruplexer Using Distributed Coupling Technique,” IEEE Microw.Wireless Compon. Lett., vol21, pp. 197199, April. 2011.
[5]M. Makimoto, and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 28, pp. 14131417, Dec. 1980.
[6]J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, 2nd. New York: Wiley, 2011.
[7]IE3D Simulator, Zeland Software, Inc. 2002.
Chapter 7
[1]C. F. Chen, T. M. Shen, T. Y. Huang, and R. B. Wu, “Design of multimode nettype resonators and their applications to filters and multiplexers,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 4, pp. 848856, Apr. 2011.
[2]J. Y. Wu, K. W. Hsu, Y. H. Tseng, and W. H. Tu, “Highisolation microstrip triplexer using multiplemode resonators,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp. 173175, Apr. 2012.
[3] H. W. Wu, S. H. Huang, and Y. F. Chen, “Design of new quadchannel diplexer with compact circuit size,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 5, pp. 240242, May. 2013.
[4] W. H. Tu, and W. C. Hung, “Microstrip eightchannel diplexer with wide stopband,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 11, pp. 272274, Nov. 2014.
[5]S. Hong, and K. Chang, “A 10–35GHz sixchannel microstrip multiplexer for wideband communication systems,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1370–1378, Apr. 2006.
[6]Y. W. Chen, H. W. Wu, Z. J. Dai, and Y. K. Su, “Design of compact sixchannel diplexer,” IEEE Microwave and Wireless Components Letters, vol. 26, no. 10, pp. 792794, Oct. 2016.
[7]K. W. Hsu, J. H. Lin, and W. H. Tu, “Compact SextBand Bandpass Filter With Sharp Rejection Response,” IEEE Trans. Microw. Theory Tech., vol. 24, no. 9, pp. 593–595, Sep. 2014.
[8]L. K. Yeung and K.L. Wu, “A compact secondorder LTCC bandpass filter with two finite transmission zero,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 337–341, Feb. 2003.
[9]J. S. Hong, and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, 2nd ed. New York: Wiley, 2011, ch. 9.
[10]IE3D Simulator, Zeland Software, Inc., 2002.
[11]S.J. Zeng, J.Y. Wu, and W.H. Tu, “Compact and highisolation quadruplexer using distributed coupling technique,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 4, pp. 197–199, Apr. 2011.
[12]C.F. Chen, T.M. Shen, T.Y. Huang, and R.B. Wu, “Design of compact quadruplexer based on the trimode nettype resonators,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, pp. 534–536, Oct. 2011.
[13]M. Zewani and I. C. Hunter, “Design of ringmanifold microwave multiplexers,” in IEEE MTTS Int. Microw. Symp. Dig., San Francisco, CA, USA, Jun. 2006, pp. 689–692.
[14]W. H. Tu and K. W. Hsu, “Design of SextBand Bandpass Filter and Sextaplexer Using Semilumped Resonators for System in a Package,” IEEE Transactions on Components, Packaging and Manufacturing Technology., vol. 5, no. 2, pp. 265273, Jan. 2015.
[15]C.W. Tang and M.G. Chen, “Packaged microstrip triplexer with starjunction topology,” Electron. Lett., vol. 48, no. 12, pp. 699–701, Jun. 2012.

論文全文使用權限 
同意授權校內瀏覽/列印電子全文服務，於20240101起公開。同意授權校外瀏覽/列印電子全文服務，於20240101起公開。 


